Math 333 - Differential Equations

Optional: How slope of the line at equilibrium solution affects sketch of phase line or solution curves

Short answer: Qualitatively there's no difference. Analytically, there is a difference.

We'll consider two examples: \(\frac{dy}{dt} = f(y) = y \) and \(\frac{dy}{dt} = g(y) = y^3 \). Both of these differential equations have an source equilibrium at \(y = 0 \), however \(g(y) = y^3 \) has the condition that \(g'(0) = 0 \), and thus the equilibrium can not be classified using the Linearization Test.

Graphs of \(f(y) \) and \(g(y) \):

\[
\begin{align*}
\frac{df}{dy} & = y \\
\frac{dg}{dy} & = y^3
\end{align*}
\]

Phaselines:

\[
\begin{align*}
\frac{dy}{dt} & = y \\
\frac{du}{dt} & = y^3
\end{align*}
\]

Now let's look at solutions. \(\frac{dy}{dt} = y \) is an exponential growth DE, and the general solution is \(y(t) = Ce^t \). We can solve \(\frac{dy}{dt} = y^3 \) by separation of variables.

\[
\begin{align*}
\frac{dy}{y^3} & = dt \\
\int dy & = \int dt \\
-\frac{1}{2}y^{-2} & = t + c \\
y^2 & = -2t + c \\
y & = \pm \frac{1}{\sqrt{c - 2t}}
\end{align*}
\]
Note that the solutions to this DE are defined only for \(t < \frac{e}{2} \) while solutions for the exponential growth DE are defined for all \(t \).

In both cases, solutions are qualitatively the same, as you can see by the fact that the phase lines are the same. The solutions increase to \(\infty \) for \(y > 0 \), decrease to \(-\infty \) for \(y < 0 \) and there's an equilibrium solution at \(y = 0 \). However in the case of \(\frac{dy}{dt} = y^3 \) solutions blow up to \(\pm \infty \) at a finite time.

Here are the solution curves for both differential equations, through the same set of initial conditions.

Notice that the solutions to \(\frac{dy}{dt} = y^3 \) blow up faster (in finite time) and take longer to go to 0 as \(t \to -\infty \).