Review: Hallmark of a Greedy Algorithm

- Sort data according to some criteria
- Consider each piece of data in sorted order and make a local decision
- Result is globally optimal (if this problem is amenable to a greedy solution)
- Complexity is generally no better than $O(n \log n)$ due to the sort
- Important to prove that the solution is optimal

Scheduling to Minimize Lateness

- Single computer processes one job at a time.
- Job j requires t_j units of processing time
- Job j has a deadline d_j by which it must be done
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$
- Lateness: $l_j = \max \{ 0, f_j - d_j \}$
- Goal: schedule all jobs while minimizing maximum lateness $L = \max_{1 \leq j \leq n} l_j$
Scheduling Example: Earliest Deadline First

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Minimizing Lateness: No Idle Time

Observation. The greedy schedule has no idle time.
Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that \(d_i < d_j \) but j is scheduled before i.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(t_2)</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Proof Strategies for Greedy Algorithms

- **Greedy algorithm stays ahead.** Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- **Exchange argument.** Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Shortest Path Problem

- **Directed graph** \(G = (V, E) \).
- **Source** s, destination t.
- **Length** \(l_e \) = length of edge e.
- \(l_e > 0 \) for all edges e.

Shortest path problem: (the Google Maps problem!) find shortest path from s to t.
Dijkstra's Algorithm: Implementation

Dijkstra's Algorithm (G, s) {
 S = {s} // S is the set of explored nodes
 d(s) = 0 // d is the distance to the node from s

 while S ! = V { // there are unexplored nodes
 select a node v from V-S with an edge from S for
 which the distance from s to v is the minimum of all
 paths to any node in V-S
 add v to S
 d(v) = minimum distance from s to v
 }
}

How do we implement this efficiently?

Dijkstra's Algorithm (G, s) {
 S = {s} // S is the set of explored nodes
 d(s) = 0 // d is the distance to the node from s
 lastNode = s

 while S != V { // there are unexplored nodes
 for each edge (lastNode, v) where v is in V-S {
 dist_to_v = d(lastNode) + (lastNode, v)
 if d'(v) is unknown {
 d'(v) = dist_to_v
 heap.addElement (v, d'(v))
 } else if dist_to_v < d'(v) {
 d'(v) = dist_to_v
 heap.changeKey(v, d'(v))
 }
 }
 lastNode = heap.extractMin()
 add lastNode to S
 d(lastNode) = d'(lastNode)
 }
}

Cost?