CS Lunch
Summer Experiences
Kendade 307

Special CS Talk
Deep Networks and Doom
Bruce Maxwell
Colby College
Friday, Nov. 11, 4:00
Kendade 305

Midterm 2!
- Monday, November 21
- In class
- Covers Greedy Algorithms
- Closed book
Divide and Conquer

Divide-and-conquer:
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage:
- Break up problem of size n into **two equal parts of size $n/2$**.
- Solve two parts recursively.
- Combine two solutions into overall solution in **linear time**.

Recommender Systems

Netflix tries to match your movie preferences with others.
- You rank n movies.
- Netflix consults database to find people with similar tastes.
- Netflix can recommend to you movies that they liked.

Doing this well was worth $1,000,000 to Netflix!!

Counting Inversions

Similarity metric: number of inversions between two rankings.
- My rank: $1, 2, \ldots, n$.
- Your rank: a_1, a_2, \ldots, a_n.
- Movies i and j are inverted if $i < j$, but $a_i > a_j$.

<table>
<thead>
<tr>
<th>Movies</th>
<th>Inversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>You</td>
<td>1 3 4 2 5</td>
</tr>
</tbody>
</table>

What is the brute force algorithm?
Counting Inversions

Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: a₁, a₂, ..., aₙ.
- Movies i and j are inverted if i < j, but aᵢ > aⱼ.

<table>
<thead>
<tr>
<th>Movies</th>
<th>Inversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>You</td>
<td>1 3 4 2 5</td>
</tr>
</tbody>
</table>

What is the brute force algorithm?
Brute force: check all Θ(n²) pairs i and j.

Divide and Conquer
Count inversions relative to a sorted list

Divide into 2 sublists of equal size

divide into 2 sublists of equal size
Count inversions relative to a sorted list

Divide and Conquer

- Divide into 2 sublists of equal size
- Recursively count the inversions
- Combine by adding recursive counts and inversions across halves

Cost:

Total = 5 + 8 + 9 = 22.
Divide and Conquer

Count inversions relative to a sorted list

Divide into 2 sublists of equal size

Recursively count the inversions

Combine by adding recursive counts and inversions across halves

Cost

Total = 5 * 8 + 9 = 22.
Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
- Fundamental geometric primitive.
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Brute force. Check all pairs of points p and q with $O(n^2)$ comparisons.

Closest Pair of Points
1-dimensional version

- Sort points
- For each point, find the distance between a point and the point that follows it.
- Remember the smallest.
Closest Pair of Points

1-D version.

- Sort points
- For each point, find the distance between a point and the point that follows it.
- Remember the smallest.

Cost

$O(n \log n)$
Closest Pair of Points

1-D version.

- Sort points
- For each point, find the distance between a point and the point that follows it.
- Remember the smallest.

Total is $O(n \log n)$

Cost

$O(n \log n)$

$O(n)$

$O(n \log n)$

Closest Pair of Points: First Attempt

- Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Problem. Impossible to ensure n/4 points in each piece.

Closest Pair of Points: First Attempt

Problem. Impossible to ensure n/4 points in each piece.
Closest Pair of Points: First Attempt

Problem: Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Divide: draw vertical line L so that n/2 points on each side.
Closest Pair of Points

Solve: find closest pair in each side recursively.
Closest Pair of Points

Combine: find closest pair with one point in each side.
Return best of 3 solutions.

How do we do this without comparing each point on left with each point on right???

Let δ be the minimum between pair on left and pair on right.
If there exists a pair with one point in each side and whose distance $< \delta$, find that pair.

Observation: only need to consider points within δ of line L.
Closest Pair of Points
Sort points in 2δ-strip by their y coordinate.

Let s_i be the point in the 2δ-strip, with the ith smallest y-coordinate.

Claim. If $|i - j| \geq 16$, then the distance between s_i and s_j is at least δ.

Proof:
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points separated by at least 3 rows have distance $\geq 3(\frac{1}{2}\delta)$.

Only need to check distances of those within 15 positions in sorted list!!!!

$\delta = \min(12, 21)$
Closest Pair of Points

Let \(s_i \) be the point in the 2δ-strip, with the \(i \)th smallest y-coordinate.

Claim. If \(|i - j| \geq 16 \), then the distance between \(s_i \) and \(s_j \) is at least \(δ \).

Proof:
- No two points lie in same \(\frac{1}{2}δ \times \frac{1}{2}δ \) box.
- Two points separated by at least 3 rows have distance \(\geq 3(\frac{1}{2}δ) \).
- If a point is within \(δ \) of point 27, it must be in one of the blue boxes.
- There are only 15 blue boxes!

Closest Pair Algorithm

Closest-Pair(p_1, …, p_n):
Compute separation line \(L \) such that half the points are on one side and half on the other side.

\(δ_1 = \text{Closest-Pair(left half)} \)
\(δ_2 = \text{Closest-Pair(right half)} \)
\(δ = \min(δ_1, δ_2) \)

Delete all points further than \(δ \) from separation line \(L \)
Sort remaining points by y-coordinate.
Scan points in y-order and compare distance between each point and next 15 neighbors. If any of these distances is less than \(δ \), update \(δ \).

return \(δ \).
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points are on one side and half on the other side.
 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)
 Delete all points further than \(\delta \) from separation line L
 Sort remaining points by y-coordinate.
 Scan points in y-order and compare distance between each point and next 15 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).
 return \(\delta \).
}

Cost

O(n log n)

2T(n / 2)

O(n)

Cost

O(n log n)

Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points are on one side and half on the other side.
 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)
 Delete all points further than \(\delta \) from separation line L
 Sort remaining points by y-coordinate.
 Scan points in y-order and compare distance between each point and next 15 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).
 return \(\delta \).
}

Cost

O(n log n)

Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points are on one side and half on the other side.
 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)
 Delete all points further than \(\delta \) from separation line L
 Sort remaining points by y-coordinate.
 Scan points in y-order and compare distance between each point and next 15 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).
 return \(\delta \).
}

Cost

O(n log n)

2T(n / 2)

O(n)
Closest Pair Algorithm

\[\text{Closest-Pair}(p_1, \ldots, p_n) \{ \]

- Compute separation line \(L \) such that half the points are on one side and half on the other side.
- \(\delta_1 = \text{Closest-Pair}(\text{left half}) \)
- \(\delta_2 = \text{Closest-Pair}(\text{right half}) \)
- \(\delta = \min(\delta_1, \delta_2) \)
- Delete all points further than \(\delta \) from separation line \(L \)
- Sort remaining points by y-coordinate.
- Scan points in y-order and compare distance between each point and next 15 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

\[\text{return } \delta. \]

\[\text{Cost} \]

\(O(n \log n) \)

\[2T(n/2) + O(n) \]

\(O(n \log n) \)

\(O(n) \)

\(2T(n/2) + O(n \log n) \)

\(O(n \log^2 n) \)

\[T(n) \leq 2T(n/2) + O(n \log n) \]

\[T(n) = O(n \log^2 n) \]