Hyperbananas
A Family of Flexible Frameworks

Kit Clement\(^1\)

University of Michigan
Mount Holyoke REU

\(^1\)Supported by NSF grant DMS-0849637
A bar and joint framework is a simple graph \(G = (V, E) \) with an embedding function \(p : V \rightarrow \mathbb{R}^d \).

Click to start
A bar and joint framework is a simple graph $G = (V, E)$ with an embedding function $p : V \rightarrow \mathbb{R}^d$.

The embedding determines the position of joints.

click to start
A bar and joint framework is a simple graph $G = (V, E)$ with an embedding function $p : V \rightarrow \mathbb{R}^d$.

- The embedding determines the position of joints
- How do we determine if a framework is rigid or flexible?
Bar-and-Joint Rigidity

- Examine **internal motions** and **rigid motions**

click to start
Bar-and-Joint Rigidity

- Examine **internal motions** and **rigid motions**
- Rigid motions are distance preserving (translations, rotations)

click to start
Examine **internal motions** and **rigid motions**

Rigid motions are distance preserving (translations, rotations)

Internal motions change the distance between at least one pair of vertices

click to start
Bar-and-Joint Rigidity

- Examine **internal motions** and **rigid motions**
- Rigid motions are distance preserving (translations, rotations)
- Internal motions change the distance between at least one pair of vertices
- **Rigid** frameworks admit only rigid motions

Click to start
Bar-and-Joint Rigidity

- Examine **internal motions** and **rigid motions**
- Rigid motions are distance preserving (translations, rotations)
- Internal motions change the distance between at least one pair of vertices
- **Rigid** frameworks admit only rigid motions
- **Flexible** frameworks admit internal motions as well
Degrees of Freedom

- The number of “basic” internal motions

click to start click to start click to start
Degrees of Freedom

- The number of “basic” internal motions
- Alternatively, number of bars to be rigid
Degrees of Freedom

- The number of “basic” internal motions
- Alternatively, number of bars to be rigid
- Triangle in \mathbb{R}^2 has 0 degrees of freedom \Rightarrow it is rigid
Degrees of Freedom

- The number of “basic” internal motions
- Alternatively, number of bars to be rigid
- Triangle in \mathbb{R}^2 has 0 degrees of freedom \Rightarrow it is rigid
- Quadrilateral in \mathbb{R}^2 has 1 degree of freedom \Rightarrow it is flexible
Maxwell Conditions

- Rigidity gives us a combinatoric constraint
Maxwell Conditions

- Rigidity gives us a combinatoric constraint

Definition

A graph $G = (V, E)$ embedded in \mathbb{R}^2 is a **Maxwell graph** if it satisfies the following conditions.

1. $|E| = 2|V| - 3$
2. $|E(V')| \leq 2|V'| - 3$, for all $V' \subseteq V$ where $|V'| \geq 2$
Maxwell Conditions

- R rigidity gives us a combinatoric constraint

Definition

A graph $G = (V, E)$ embedded in \mathbb{R}^2 is a **Maxwell graph** if it satisfies the following conditions.

1. $|E| = 2|V| - 3$
2. $|E(V')| \leq 2|V'| - 3$, for all $V' \subseteq V$ where $|V'| \geq 2$

- James Maxwell (1864) shows G is rigid \Rightarrow G is a Maxwell graph
Maxwell Conditions

- R rigidity gives us a combinatoric constraint

Definition

A graph $G = (V, E)$ embedded in \mathbb{R}^2 is a **Maxwell graph** if it satisfies the following conditions.

1. $|E| = 2|V| - 3$
2. $|E(V')| \leq 2|V'| - 3$, for all $V' \subseteq V$ where $|V'| \geq 2$

- James Maxwell (1864) shows G is rigid $\Rightarrow G$ is a Maxwell graph
- These conditions generalize to d-dimensions
Maxwell Conditions

- Rigidity gives us a combinatoric constraint

Definition

A graph $G = (V, E)$ embedded in \mathbb{R}^d is a Maxwell graph if it satisfies the following conditions.

1. $|E| = d|V| - \binom{d+1}{2}$
2. $|E(V')| \leq d|V'| - \binom{d+1}{2}$, for all $V' \subseteq V$ where $|V'| \geq d$

- James Maxwell (1864) shows G is rigid \Rightarrow G is a Maxwell graph
- These conditions generalize to d-dimensions
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
Double Banana

- Is it true that G is a Maxwell graph \implies G is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
- Classical counterexample in \mathbb{R}^3: double banana
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
- Classical counterexample in \mathbb{R}^3: double banana

- $|V| = 8, |E| = 18$
Is it true that G is a Maxwell graph \Rightarrow G is rigid as well?

Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs.

Classical counterexample in \mathbb{R}^3: double banana

- $|V| = 8$, $|E| = 18$
- Satisfies the condition $|E| = 3|V| - 6$
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
- Classical counterexample in \mathbb{R}^3: double banana

- $|V| = 8, |E| = 18$
- Satisfies the condition $|E| = 3|V| - 6$
- However, there is a hinge between two black vertices
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
- Classical counterexample in \mathbb{R}^3: double banana

$$|V| = 8, \quad |E| = 18$$

- Satisfies the condition $|E| = 3|V| - 6$
- However, there is a hinge between two black vertices
Double Banana

- Is it true that G is a Maxwell graph $\Rightarrow G$ is rigid as well?
- Laman (1970) proves this is true in \mathbb{R}^2 for generically rigid graphs
- Classical counterexample in \mathbb{R}^3: double banana

- $|V| = 8, |E| = 18$
- Satisfies the condition $|E| = 3|V| - 6$
- However, there is a hinge between two black vertices
- We call this an implied edge
Research Questions

- Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.
Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.

Very difficult
Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.

Very difficult

What other classes of counterexamples are there?

My question: can we generalize current counterexamples to d-dimensional space? Specifically, can we extend the double banana example?

Goal: try to use implied edges to connect rigid components.
Research Questions

- Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.
- Very difficult
- What other classes of counterexamples are there?
- **My question**: can we generalize current counterexamples to d-dimensional space?
Research Questions

- Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.
- Very difficult
- What other classes of counterexamples are there?
- **My question:** can we generalize current counterexamples to d-dimensional space?
- Specifically, can we extend the double banana example?
Research Questions

- Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.
- Very difficult
- What other classes of counterexamples are there?
- My question: can we generalize current counterexamples to d-dimensional space?
- Specifically, can we extend the double banana example?
- Goal: try to use implied edges to connect rigid components
Open Question: Find a necessary and sufficient combinatorial condition for rigidity in \mathbb{R}^3.

Very difficult

What other classes of counterexamples are there?

My question: can we generalize current counterexamples to d-dimensional space?

Specifically, can we extend the double banana example?

Goal: try to use implied edges to connect rigid components
Can we make a generalized double banana in \mathbb{R}^4?
Can we make a generalized double banana in \mathbb{R}^4?

Replace two K_3 subgraphs with two K_4 subgraphs
Can we make a generalized double banana in \mathbb{R}^4?
Replace two K_3 subgraphs with two K_4 subgraphs
Can we make a generalized double banana in \mathbb{R}^4?

- Replace two K_3 subgraphs with two K_4 subgraphs
Can we make a generalized double banana in \mathbb{R}^4?

Replace two K_3 subgraphs with two K_4 subgraphs

Problem: need to add two edges to make it Maxwell
Can we make a generalized double banana in \mathbb{R}^4?

Replace two K_3 subgraphs with two K_4 subgraphs

Problem: need to add two edges to make it Maxwell

Want to find an example that doesn’t need these edges
Can we make a generalized double banana in \mathbb{R}^5?
5D Banana

- Can we make a generalized double banana in \mathbb{R}^5?
- Yes, and without any extra edges between complete graphs!
Can we make a generalized double banana in \mathbb{R}^5?
Yes, and without any extra edges between complete graphs!
Can we make a generalized double banana in \mathbb{R}^5?
Yes, and without any extra edges between complete graphs!

Satisfies Maxwell conditions, yet is flexible
Can we make a generalized double banana in \mathbb{R}^5?
Yes, and without any extra edges between complete graphs!

Satisfies Maxwell conditions, yet is flexible
Counterexample for Maxwell’s conditions being a characterization of rigidity
Can we make a generalized double banana in \mathbb{R}^5?

Yes, and without any extra edges between complete graphs!

Satisfies Maxwell conditions, yet is flexible

Counterexample for Maxwell’s conditions being a characterization of rigidity

Can we generalize this?
Hyperbananas

Lives in d-dimensional space for odd d
Hyperbananas

Lives in d-dimensional space for odd d

Made up of vertices from two K_d graphs, and n banana vertices
Hyperbananas

- Lives in d-dimensional space for odd d
- Made up of vertices from two K_d graphs, and n banana vertices
- Each banana vertex connects to all vertices except other banana vertices

$KB_{d,n}$
Hyperbananas

- Lives in d-dimensional space for odd d
- Made up of vertices from two K_d graphs, and n banana vertices
- Each banana vertex connects to all vertices except other banana vertices
- It must be that $n = \frac{d+1}{2}$
$KB_{3,2}$ is just the classical double banana example.
$KB_{3,2}$ is just the classical double banana example
$KB_{3,2}$ is just the classical double banana example
$KB_{5,3}$

- We saw $KB_{5,3}$ as the five dimensional example earlier
We saw $KB_{5,3}$ as the five dimensional example earlier.
We saw $KB_{5,3}$ as the five dimensional example earlier.
Results

Theorem

The hyperbanana $KB_{d,n}$ embedded in \mathbb{R}^d where $n = \frac{d+1}{2}$ is a flexible Maxwell graph with $\binom{n}{2}$ degrees of freedom.
Theorem

The hyperbanana $ KB_{d,n} $ embedded in $ \mathbb{R}^d $ where $ n = \frac{d+1}{2} $ is a flexible Maxwell graph with $ \binom{n}{2} $ degrees of freedom.

- Degrees of freedom coincide with the $ K_n $ of implied edges.
Theorem

The hyperbanana \(KB_{d,n} \) embedded in \(\mathbb{R}^d \) where \(n = \frac{d+1}{2} \) is a flexible Maxwell graph with \(\binom{n}{2} \) degrees of freedom.

- Degrees of freedom coincide with the \(K_n \) of implied edges
Sketch of Proof

- Maxwell: combinatorial argument
Sketch of Proof

- Maxwell: combinatorial argument
- Flexibility: Involves analysis of the **rigidity matrix**
Sketch of Proof

- Maxwell: combinatorial argument
- Flexibility: Involves analysis of the rigidity matrix
- The upper/lower halves of the matrix each correspond to a rigid component of $KB_{d,n}$
Sketch of Proof

- Maxwell: combinatorial argument
- Flexibility: Involves analysis of the **rigidity matrix**
- The upper/lower halves of the matrix each correspond to a rigid component of $KB_{d,n}$
Sketch of Proof

- Maxwell: combinatorial argument
- Flexibility: Involves analysis of the **rigidity matrix**
- The upper/lower halves of the matrix each correspond to a rigid component of $KB_{d,n}$

\[
\begin{bmatrix}
V_2 & V_1 & V_3 \\
M'(1) & 0 \\
0 & M'(2)
\end{bmatrix}
\]
Sketch of Proof

- Maxwell: combinatorial argument
- Flexibility: Involves analysis of the **rigidity matrix**
- The upper/lower halves of the matrix each correspond to a rigid component of $KB_{d,n}$

\[
\begin{bmatrix}
 & V_2 & V_1 & V_3 \\
M'(1) & 0 & \\
0 & M'(2) & \\
\end{bmatrix}
\]

- Row reduction reveals dependencies in the matrix that correspond to the implied edges
The 4D banana example can be generalized.
The 4D banana example can be generalized

Like $KB_{d,n}$, but with $\frac{d}{2}$ edges carefully added
The 4D banana example can be generalized

- Like $KB_{d,n}$, but with $\frac{d}{2}$ edges carefully added
- Proven they are Maxwell, conjectured that they are flexible
Future Work

- The 4D banana example can be generalized

- Like $KB_{d,n}$, but with $\frac{d}{2}$ edges carefully added
- Proven they are Maxwell, conjectured that they are flexible
- Symmetry is lost when $\frac{d}{2}$ edges are added, so rigidity matrix analysis is more delicate
Thanks for listening!

Questions?

Thanks to my advisors Audrey Lee-St. John and Jessica Sidman for their guidance on my research.

Also, thanks to the Michigan REU and Patrick Boland for hosting/advising the REU program which I participated in last summer.