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Introduction

This summer we explored the connections between geometric objects
such as polytopes and projective toric varieties and algebraic objects
such as monomials and ideals. We followed a path which started at
special types of polytopes called selfatopes. We associated monomials
to them and then a mapping. This mapping brought us to a projective
toric variety which we then associated with an ideal of a polynomial
ring.

In section 1 we introduce basic definitions concerning convexity, poly-
topes, dimension, and selfatopes, which will be needed throughout the
paper. Then in section 2 we define products and prisms of polytopes
and prove that these operations preserve the characteristics of self-
atopes. In section 3 we define the mapping, toric variety, and ideal
associated with a general lattice polytope. We then prove several pro-
postions about the toric varieties and ideals of the standard lattice
n-simplices, pyramids, and prisms of polytopes. Finally, we end with
a conjecture about the ideal of the toric variety of the product of two
polytopes.

Although the results in this paper may not be new to experts, we
give explicit proofs which may not appear in the literature in this form.

1. Basic Definitions

First we define some fundamental terms that will be necessary in
understanding this paper.

Definition 1.1. A set C ⊂ Rn is convex if for every p, q ∈ C,
tp + (1 − t)q ⊂ C, 0 ≤ t ≤ 1. In other words C is convex if for every
pair of elements in C the line segment between them is also contained
in C.
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Definition 1.2. Let A ⊂ Rn. The convex hull of A, conv(A), is the
intersection of all convex sets containing A. It is the smallest convex
set containing A.

Definition 1.3. A polytope is the convex hull of a finite set of points.

Example 1.4. Here is an example of a polytope in R2 and a non-
example which fails to be a convex-hull.

Not a Polytope
(not a convex hull)

Polytope

The following definitions are essential in understanding the dimen-
sion and faces of a polytope P.

Definition 1.5. A hyperplane in R
n is the set of all solutions to a

linear equation λ1x1 + . . . + λnxn = 0 where not all λi = 0.

Definition 1.6. An affine hyperplane in R
n is the set of all solutions

to a linear equation λ1x1 + . . . + λnxn = a where not all λi = 0 and
a ∈ R.

Definition 1.7. Let A be a subset of Rn. The affine hull of A, aff(A),
is the intersection of all affine hyperplanes containing A.

Definition 1.8. The dimension of a polytope P is the dimension of
its affine hull. A polytope is full-dimensional in Rn if the dimension of
P is n.

Example 1.9. Here is a triangle in R3 which lies entirely in the xy-
plane. Thus its affine hull is the xy-plane and its dimension is 2. This
triangle is not full-dimensional in R

3.
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Definition 1.10. If H is the hyperplane a ·w = α, where α ∈ R, then
H+ = {w ∈ Rn|a · w ≥ α}
H− = {w ∈ R

n|a · w ≤ α}
are the positive and negative halfspaces determined by H.

Example 1.11. Let H be the hyperplane (−1, 1) · (x, y) = 0. Here are
H+ and H−.

_
H 

H+

Definition 1.12. A hyperplane H is a supporting hyperplane of a poly-
tope P if

(1) H ∩ P 6= ∅
(2) P lies in H+ or H−.

Definition 1.13. If H is a supporting hyperplane of P , then H ∩ P
is a face of P . 0-dimensional faces are vertices, 1-dimensional faces are
edges and the (n − 1)-dimensional faces of an n-dimensional polytope
are facets.

Example 1.14. Here are supporting hyperplanes of the polytope P =
conv{(0, 0), (0, 1), (1, 0)}.

(1)

(3)

(2)

(4)

(5) (6)
(7)

(8)

(1) y = 1
(2) x = 0
(3) x + y = 0
(4) y = 0
(5) y - x = -1
(6) x = 1
(7) x + y = 1
(8) −1

2
x + y = −1

2

Note that a vertex has (infinitely) many supporting hyperplanes.

Definition 1.15. Let P be a polytope. Define vert(P)={v | v is a vertex of P}.

The following definitions concern the specific characteristics of the
polytopes discussed in section 2 of this paper.

Definition 1.16. A lattice point is an element of Z
n.
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Definition 1.17. A polytope whose vertices are lattice points is a
lattice polytope. A polytope with no lattice points on its edges except
for its vertices has lattice-free edges.

Definition 1.18. A polytope P ⊆ Rn is smooth if for all v ∈ vert(P ),
the vectors {w1 − v, ..., wk − v} form part of a Z − basis for Zn, where
w1, ..., wk are the nearest lattice points to v along the edges incident to
v. In other words if P is full-dimensional in Rn then P is smooth if for
all v,

det





| |
w1 − v . . . wk − v

| |



 = ±1.

Definition 1.19. A selfatope is a smooth lattice polytope with lattice-
free edges.

Example 1.20. Here is an example of a selfatope and two non-examples
which fail to be a selfatopes for different reasons.

(1, 0)

(1, 1)(0, 1)

(0, 0)

(1,0)

(0, 1)

(−1, 0)

(0, −1)

Not a Selfatope (not smooth)Selfatope

(0, 1) (2, 1)

(2, 0)(0, 0)
Not a Selfatope 

(does not have lattice−free edges)

2. Making New Selfatopes: Prisms and Products

Once we have some basic examples of selfatopes we would like to
form new selfatopes out of these examples. One way to do this is to
prism a selfatope or take a product of two selfatopes. In this section
we show that these constructions preserve the properties of a selfatope.
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Definition 2.1. The product of two polytopes P ⊆ Rm and Q ⊆ Rn

is P × Q = {(p, q) ∈ Rm+n | p ∈ P, q ∈ Q}. The product P×[0,1] is
called the prism of P.

Example 2.2.

prism of PP

The following two propositions are well known results concerning the
product of two polytopes:

Proposition 2.3. If P ⊆ Rm and Q ⊆ Rn are polytopes, then P × Q
is a polytope.

Proposition 2.4. The k-dimensional faces of P × Q are

{F × H | F ∈ face i(P ) and H ∈ face j(Q) where i + j = k},

where face i(P ) = {i − dimensional faces of P}.

Corollary 2.5. Let P ⊆ Rm and Q ⊆ Rn be polytopes. Vertices of
P × Q, are products of the vertices of P and Q.

Theorem 2.6. If P ⊆ Rm and Q ⊆ Rn are selfatopes, then P × Q is
a selfatope.

Proof. Let P be full-dimensional in Rm and let Q be full-dimensional
in R

n. We need to show that P×Q (1) is a lattice polytope, (2) has
lattice-free edges, and (3) is smooth.

(1) Since P and Q are lattice polytopes P×Q is a lattice polytope,
by Corollary 2.5.

(2) Let l be an edge in P×Q. So dim(l)=1. Therefore l is the product
of a 0-dimensional face of P and a 1-dimensional face of Q or vice-versa
by Proposition 2.4.

Let d ∈ l , d = (p, point on edge in Q) or d = (point on edge in P, q)
where p ∈ vert(P) and q ∈ vert(Q). Since the edges of P and Q are
lattice-free, d will not be a lattice point unless d is a vertex. So P×Q
has lattice-free edges.

(3) Let v ∈ vert(P×Q). So v = (p, q) where p ∈ vert(P) and
q ∈ vert(Q). Since P is full-dimensional in Rm and P is smooth each ver-
tex has m incident edges. So the edges incident to p are {pp1, ..., ppm}
where pi ∈ vert(P), 1 ≤ i ≤ m and ppi is the edge between p and
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pi. Similarly edges incident to q are {qq1, ..., qqn} where qk ∈ vert(Q),
1 ≤ k ≤ n and qqk is the edge between q and qk.

So the edges incident to v are {p}×qqk where 1 ≤ k ≤ n and ppi×{q}
where 1 ≤ i ≤ m. Since these edges are lattice-free, the closest lattice
points to v along these edges are the vertices (p, q1),...,(p,qn), (p1, q),
...,(pm, q). In calculating smoothness we have the difference vectors
(0̄, q1−q),...,(0̄, qn−q), (p1−p,0̂),...,(pm−p,0̂), where 0̄ is the zero-vector
in Rm and 0̂ is the zero-vector in Rn.

Let A =





| |
p1 − p . . . pm − p

| |



 and B =





| |
q1 − q . . . qn − q

| |



 .

Since P and Q are smooth detA = ± 1 and detB = ± 1. Thus

det

(

A 0
0 B

)

= ±1.

Therefore P×Q is smooth. �

3. Ideals and Toric Varieties of Pyramids and Products

In this section we relate polytopes to geometric objects in projective
space called varieties and then to ideals of polynomial rings. For more
details concerning this material, refer to [3]. Furthermore we explore
how making pyramids and products of polytopes affects these ideals.
We begin with some general definitions:

Definition 3.1. Let K be a field. Let t = (t1, t2, ..., tn) ∈ (K∗)n and
let a = (a1, a2, ..., an) ∈ Zn. Define ta = ta1

1 ta2

2 ...tan
n .

Example 3.2. Let t = (t1, t2) ∈ (C∗)2. So (t1, t2)
(7,4) = t71t

4
2.

Definition 3.3. Affine n-space over a field K is An
K = Kn.

Definition 3.4. An affine variety ⊆ An
C

is the solution set of a finite
number of polynomial equations.

Now we relate these ideas specifically to polytopes.

Definition 3.5. Let P be a lattice polytope ⊂ Rn with P ∩ Zn =
{a0, ..., am} where ai = (ai1, ..., ain). Define φP : (C∗)n −→ Pm, where
φP (t) = [ta

0 : ... : tam ].

Definition 3.6. Let P be a n-dimensional lattice polytope ⊆ Rn with
P ∩ Zn = {a0, ..., am}. The closure of the image of φP in Pm

C
is the

projective toric variety XP .
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Definition 3.7. The ideal of XP is I(XP )= {f ∈ C[x0, ...xm] | f(a) =
0, ∀a ∈ XP}.

Example 3.8. Let P = conv{(0, 0), (1, 0), (0, 1), (1, 1)}.
P ∩ Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)}

(0, 0) (1, 0)

(0, 1) (1, 1)

So φP : (C∗)2 −→ P3

Let t = (t1, t2) ∈ (C∗)2. We have that φP (t) = [1 : t1 : t2 : t1t2].

Im(φP ) = {[λ : λt1 : λt2 : λt1t2] | λ 6= 0}, as we account for homoge-
neous coordinates.

So XP = Im(φP ).
Using Macaulay2 [4], I(XP ) = 〈x1x2 − x0x3〉.

Definition 3.9. The variety of an ideal I ⊆ C[x0, ..., xm] is V (I) =
{a ∈ An

C
| f(a) = 0, ∀f ∈ I}. V (I) is closed.

Proposition 3.10. The polynomial f ∈ C[x0, ..., xm] is zero when eval-
uated at every point of XP if an only if f is zero when evaluated at every
point of the image of φP .

Proof. (⇒) This implication follows from Im φP ⊆ XP .
(⇐) Let f vanish on Im φP . This implies that Im φP ⊆ V (〈f〉). Since
V (〈f〉) is closed and XP = Im φP , we have that XP ⊆ V (〈f〉). There-
fore f vanishes on XP . �

Corollary 3.11. Let P be a n-dimensional lattice polytope ⊆ Rn with
P ∩ Z

n = {a0, ..., am}.

I(XP ) = {f ∈ C[x0, ..., xm] | f([λta0 : ... : λtam ]) = 0 where λ 6= 0, t ∈ (C∗)n}.

Let’s first look at the ideals and toric varieties of one of the most
basic families of polytopes, the standard n-simplices.

Definition 3.12. A standard lattice n-simplex, ∆n ⊂ Rn, is conv{0̄, e1, ..., en}
where 0̄ is the zero vector in Rn and e1, ..., en are the standard basis
vectors of R

n.
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Example 3.13.

2−simplex1−simplex0−simplex 3−simplex

Proposition 3.14. If P is a standard lattice n-simplex, then I(XP )=〈0〉.

Proof. Since P = conv{0̄, e1, ..., en} ⊂ Rn, P ∩ Zn = {0̄, e1, ..., en}. So
φP (t) = [1:t1 : ... : tn] where t = (t1, ..., tn).

Thus Im φP = {[λ : λt1 : ... : λtn] | λ 6= 0, t ∈ (C∗)n}.

Suppose I(XP )6= 〈0〉. So there exists an f ∈ C[x0, ..., xn] such that
f(x)= 0 for all x ∈ XP and f is not the zero polynomial. This implies
f(x)= 0 for all x ∈ Im φP ⊆ XP . Hence f([λ : λt1 : ... : λtn]) = 0
∀λ 6= 0 and t ∈ (C∗)n.

Since f is a polynomial, f =
∑N

i=0 αi(x
ai) where αi ∈ C and ai ∈

Nn+1, ai 6= aj ∀i, j.

So f([λ : λt1 : ... : λtn]) =
N

∑

i=0

αi([λ : λt1 : ... : λtn])ai = 0.

Since f is not the zero polynomial there exists i such that αi 6= 0.

So f([λ : λt1 : ... : λtn]) = αiλ
kt

ai,1

1 t
ai,2

2 ...tn
ai,n+... = 0, where k = ai,0ai,1...ai,n.

However since each term of f is a distinct monomial, as the aj’s are
distinct for all j, this ith term cannot be cancelled. Thus we have a
contradiction and so f must be the zero polynomial and I(XP )=〈0〉.

�

Corollary 3.15. If P is standard lattice n-simplex, then XP = Pn
C
.

Proof. Let P be an n-simplex. By Proposition 3.14, I(XP )= 〈0〉. Since
XP is a variety it is the set of points {x ∈ PC

n | f(x) = 0, ∀f ∈ I(XP )}.
Therefore XP = P

n
C
, since every element of P

n
C

is a solution to the zero
polynomial. �

Now that we know the varieties and ideals of varieties of n-simplices
we move on to slightly more complicated polytopes. Given a lattice
polytope we can form new lattice polytopes from it by constructing
pyramids, prisms, and products.
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Definition 3.16. Let P be a d-dimensional polytope ⊂ Rn, n > d.
The pyramid of P, pyr(P ), is conv(P,p) where p /∈ aff(P). A pyramid
over P has dimension d + 1.

Example 3.17.

     P pyr(P)

Proposition 3.18. Let P ⊆ Rn × {0} ⊆ Rn+1 be a lattice polytope.
Let pyr(P)⊂ Rn+1 equal conv(P, p) where p = (p1, ..., pn, 1). I(XP ) and
I(Xpyr(P )) have the same generators.

Proof. Let I(XP )=〈g1, ..., gs〉 where gi ∈ C[x0, ..., xm] ⊂ C[x0, ..., xm+1].
We need to show (1) gi ∈ I(Xpyr(P )) ∀i ∈ {1, ...s} and (2) ∀f ∈
I(Xpyr(P )), f = β1g1 + ... + βsgs where βi ∈ C[x0, ..., xm+1], 1 ≤ i ≤ s.

(1) Let P ∩ Zn = {a0, ..., am}, so

φP (t) = [ta
0 : ... : tam ] where t = (t1, ..., tn) ∈ (C∗)n.

Thus Im φP={[λta0 : ... : λtam ] | λ 6= 0 t ∈ (C∗)n}.
So gi([λta0 : ... : λtam ]) = 0, ∀i ∈ {1, .., s}.

Since pn+1 = 1, the only lattice point in pyr(P ) that is not in P
is p itself. So pyr(P ) ∩ Zn+1 = {(a0, 0), ..., (am, 0), (p1, ..., pn, 1)}. Let

t′ = (t1, ..., tn, tn+1) ∈ (C∗)n+1,

φpyr(P )(t
′) = [t′

(a
0
,0)

: ... : t′
(am,0)

: t′
p
] = [ta0 : ... : tam : t′

p
].

Thus Im φpyr(P ) = {[λta0 : ... : λtam : λt′p ] | λ 6= 0, t′ ∈ (C∗)n+1}.
Note that ∀i ∈ {1, ..., s}, gi([λta

0 : ... : λtam : λt′p ]) = 0, since gi has
no (m + 1)st term. Therefore by Corollary 3.11, gi ∈ I(Xpyr(P )), ∀i.
This implies that

〈g1, ..., gs〉C[x0, ..., xm+1] ⊆ I(Xpyr(P )),

where 〈g1, ..., gs〉C[x0, ..., xm+1] = {g1q1+g2q2+...+gsqs | qk ∈ C[x0, ..., xm+1], 1 ≤
k ≤ s}.

(2) Let f ∈ I(Xpyr(P )). So f([λta0 : ... : λtam : λt′p ]) = 0, ∀λ 6= 0.

Since f ∈ C[x0, ..., xm+1], f(x) =
∑N

j=0 αj(x
bj ) = 0 where bj ∈ Nm+2

and αj ∈ C.
Now group terms of f by the exponents of xm+1. So

f(x) = h1(x0, ..., xm)xk1

m+1 + ... + hγ(x0, ..., xm)x
kγ

m+1,
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where γ ∈ N, kw ∈ N, kw 6= kv ∀w, v, and hw ∈ C[x0, ..., xm], ∀w ∈
{1, ..., γ}.
Thus f([λta0 : ... : λtam : λt′p ]) =

h1([λta0 : ... : λtam ])(λt′
p
)k1 + ... + hγ([λta0 : ... : λtam ])(λt′

p
)kγ = 0.

For all w, hw([λta
0 : ... : λtam])(λt′p)kw cannot cancel with any other

term since no other term has tkw

n+1 in it, as all the kw’s are distinct.
Thus for all w, hw([λta0 : ... : λtam ])(λt′p)kw must equal 0. This

implies hw([λta
0 : ... : λtam ]) = 0 or (λt′p)kw = 0. Since (λt′p)kw 6= 0,

we have that hw([λta0 : ... : λtam ]) = 0. This implies that

∀w, hw(x0, ..., xm) ∈ I(XP ) = 〈g1, ..., gs〉C[x0, .., xm].

Thus ∀w, hw = rw1g1+...+rwsgswhere rwc ∈ C[x0, .., xm], ∀c. Therefore

f = (r11g1 + ... + r1sgs)(x
k1

m+1) + ... + (rγ1g1 + ... + rγsgs)(x
kγ

m+1)

Combining like terms and substituting βi = r1i(x
k1

m+1) + r2i(x
k2

m+1) +

... + rγi(x
kγ

m+1) we have that

f = β1g1 + β2g2 + ... + βsgs, where βi ∈ C[x0, ..., xm+1], ∀i.

This implies f ∈ 〈g1, ..., gs〉C[x0, ..., xm+1].

So 〈g1, ..., gs〉C[x0, ..., xm+1] ⊆ I(Xpyr(P )).

Thus 〈g1, ..., gs〉C[x0, ..., xm+1] = I(Xpyr(P )). Therefore I(XP ) and I(Xpyr(P ))
have the same generators. �

Note that the standard n-simplex is a pyramid of the standard
(n − 1)-simplex and so this proof provides another way to show that
I(X∆n

)= 〈0〉.
Now recall from the last section that the product of two polytopes

P ⊆ Rm and Q ⊆ Rn is P × Q = {(p, q) ∈ Rm+n | p ∈ P, q ∈ Q} and
that P×[0,1] is called the prism of P.

Proposition 3.19. Let P be a full-dimensional lattice polytope in Rn.
There are two copies of I(XP ) in I(XP×[0,1]).

Proof. Let P ∩ Zn = {a0, ..., am}, so

φP (t) = [ta
0 : ... : tam ] where t = (t1, ..., tn) ∈ (C∗)n.

Thus Im φP ={[λta0 : ... : λtam ] | λ 6= 0, t ∈ (C∗)n}.

(P × [0, 1]) ∩ Zn+1 = {(a0, 0), ..., (am, 0), (a0, 1), ..., (am, 1)}.
Let t′ = (t1, ..., tn, tn+1) ∈ (C∗)n+1,

φP×[0,1](t
′) = [t′

(a
0
,0)

: ... : t′
(am,0)

: t′
(a

0
,1)

: ... : t′
(am,1)

]

= [ta0 : ... : tam : ta0tn+1 : ... : tamtn+1 ].
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And so we have,

Im φP×[0,1] = {[λta0 : ... : λtam : λta0tn+1 : ... : λtamtn+1] | λ 6= 0, t ∈ (C∗)n}.

Let I(XP ) ⊆ C[x0, ..., xm] and let I(XP×[0,1]) ⊆ C[x0, ..., xm, y0, ..., ym].
Let I(XP )=〈gx1, ..., gxs〉. Since XP is a projective toric variety its ideal
is homogeneous and so we can assume that for all i, gxi is homogeneous.

We can express gxi as
∑N

j=0 αij(x
β

ij ) ∈ C[x0, ..., xm] where αij ∈ C and

βij ∈ Nm+1. Let gyi =
∑N

j=0 αij(y
β

ij ) ∈ C[y0, ..., ym]. So gyi is also

homogeneous. Let gxi =
∑N

j=0 αij(x
β

ij ) ∈ C[x0, ..., xm, y0, ...ym] and

gyi =
∑N

j=0 αij(y
β

ij ) ∈ C[x0, ..., xm, y0, ..., ym].

We need to show (1) gxi ∈ I(XP×[0,1]) ∀i ∈ {1, ...s} and (2) gyi ∈
I(XP×[0,1]) ∀i ∈ {1, ...s}.

(1) Note that ∀i ∈ {1, ..., s},

gxi([λta0 : ... : λtam : λta0tn+1 : ... : λtamtn+1 ]) = gxi([λta0 : ... : λtam : 0 : ... : 0])

= gxi([λta0 : ... : λtam ])

= 0,

since gxi has no y0 through ym terms and gxi ∈ I(XP ). Therefore by
Corollary 3.11, gxi ∈ I(XP×[0,1]), ∀i. This implies that

〈gx1, ..., gxs〉C[x0, ..., xm, y0, ..., ym] ⊆ I(XP×[0,1]),

where 〈gx1, ..., gxs〉C[x0, ..., xm, y0, .., ym] = {gx1q1 + gx2q2 + ... + gxsqs |
qk ∈ C[x0, ..., xm, y0, ..., ym], 1 ≤ k ≤ s}.

(2) Let d > 0. Since gyi has no x0 through xm terms and gyi is
homogeneous,

gyi([λta0 : ... : λtam : λta0tn+1 : ... : λtamtn+1 ]) = gyi([0 : ... : 0 : λta0tn+1 : ... : λtamtn+1 ])

= gyi([λta
0tn+1 : ... : λtamtn+1 ])

= tdn+1gyi([λta0 : ... : λtam ])

= 0.

Therefore by Corollary 3.11, gyi ∈ I(XP×[0,1]), ∀i. This implies that

〈gy1, ..., gys〉C[x0, ..., xm, y0, ..., ym] ⊆ I(XP×[0,1]),

Thus there are two copies of I(XP ) in I(XP×[0,1]). �

Conjecture 3.20. If P and Q are lattice polytopes, I(XP ) is contained
in I(XP×Q) and I(XQ) is contained in I(XP×Q).
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Remark 3.21. Notice that the conjecture is true for prisms since by
Proposition 3.19, I(XP ) is contained in I(XP×[0,1]) and I(X[0,1]) =
〈0〉 ⊂ I(XP×[0,1]) by Propostion 3.14, since [0, 1] is a simplex.

Futher Reading:
If you would like to read more about the topics introduced in this paper,
refer to [1], [5], and [6].
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