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Introduction

Through toric varieties, polytopes have been connected with projec-
tive algebraic geometry, cones and fans, ring ideals, and group actions.
Polytopes are also useful in fields such as Operations Research and
involve the use of combinatorics and linear algebra.

Our goal this summer was to better understand a special class of
polytopes which we called a selfatope. Selfatopes first appeared in a
problem in a theorem on toric varieties by Jessica Sidman and David
Cox. Once we were able to recognize a selfatope, we began looking into
how these polytopes might be related to each other. Along with trying
to classify the examples we had created, we also tried to expand our
list of examples by developing algorithms to construct more selfatopes.
In the process, we were able to discover certain patterns as well as
interesting, and slightly unexpected, restrictions on the existence of
selfatops.

The first section of this paper will provide a general overview of
terms and ideas needed in what follows. In Section 2, we will present
a theorem which will outline a criterion for determining equivalence
between polytopes. This section will also include a distinct class of ex-
amples. Section 3 will provide the first look into a method for creating
selfatopes and the limits of this method. Section 4 will outline another
method which will prove to be helpful in creating selfatopes. The last
section, Section 5, contains two algorithms to generate selfatopes with
some specified characteristics.
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1. Definitions and Background

In order to understand selfatopes, we need a basic understanding
of polytopes in general. The following definitions are standard terms
regarding polytopes. For more information, please refer to Ziegler or
Grünbaum. [4] [3]

Definition 1.1. A set A is convex if ∀ p, q ∈ A, tp + (1 − t)q ∈ A
for 0 ≤ t ≤ 1. Furthermore, the convex hull of a set A ∈ R

n is the
intersection of all convex sets that contain A.

Example 1.2. As an example, we look at a doughnut shape and a
circle. The doughnut is not convex because the line connecting the two
displayed points passes outside of the doughnut. This is not true for
the circle, which is in fact convex.

Definition 1.3. A polytope is the convex hull of a finite set of points
in R

n.

Example 1.4. In this example, A is a finite set of points in R
2. When

we take the convex hull of A, we get a convex polytope.

A conv(A)

Definition 1.5. Let v1, . . . , vk ∈ R
n. Then rivi + . . .+ rkvk is a convex

combination if all ri ≥ 0 and
∑

ri = 1.
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In fact, the convex hull of a set of points {v1, . . . , vk} can be written
as the convex combination of those points. That is conv({v1, . . . , vk}) =
{r1v1 + . . . + rkvk|ri ≥ 0,

∑

ri = 1}. For proof of this, see Ziegler. [4]
We have defined a polytope in terms of a set of points, however, we

can also define it in terms of hyperplanes.

Definition 1.6. A hyperplane in R
n is the set of all solutions to a

linear equation λ1x1 + . . . + λnxn = 0 where not all λi = 0.

Now that we have a defined polytopes, we need to generate tools to
be able to describe their properties.

Definition 1.7. An affine hyperplane in R
n is the set of all solutions

to a linear equation λ1x1 + . . . + λnxn = a where λi, a ∈ R and not
all λ = 0. If A is a subset of R

n, the affine hull of A, aff(A), is the
intersection of all affine hyperplanes containing A.

This affine geometry allows us to define the smallest space the poly-
tope is contained in.

Definition 1.8. The dimension of a polytope P is the dimension of
its affine hull. A polytope is full dimensional in R

n if the dimension of
P is n.

Example 1.9. The polytope P below is embedded in R
3 but aff(P ) =

R
2 which is the xy-plane. So the dimension of P is 2. Note that P is

not full dimensional in R
3.

z

x

y
P

Definition 1.10. If H is the hyperplane a · w = α where α ∈ R and
a ∈ R

n, then
H+ = {w ∈ R

n|a · w ≥ α}
H− = {w ∈ R

n|a · w ≤ α}
are the positive and negative halfspaces determined by H.

A polytope can also be described as the bounded intersection of a
finite number of halfspaces, as shown in Ziegler. [4]

Definition 1.11. A hyperplane H is a supporting hyperplane of a poly-
tope P if

(1) H ∩ P 6= ∅
(2) P lies in H+ or H−.
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Example 1.12. Let us look at the supporting hyperplanes of the poly-
tope P = conv{(0, 0), (0, 1), (1, 0)}, with thanks to Lisa Byrne for pro-
viding the following picture. Note that there are four supporting hy-
perplanes shown at the vertex (1, 0). In fact, there are infinitely many
supporting hyperplanes at each vertex. They are all lines in R

2 which
intersect the vertex and keep P to one side.

(1)

(3)

(2)

(4)

(5) (6)
(7)

(8)

(1) y = 1
(2) x = 0
(3) x + y = 0
(4) y = 0
(5) y - x = -1
(6) x = 1
(7) x + y = 1
(8) −1

2
x + y = −1

2

Not only do hyperplanes define polytopes, they also define specific
aspects of polytopes.

Definition 1.13. If H is a supporting hyperplane of P , then H∩P is a
face of P . A vertex is a 0-dimensional face, an edge is a 1-dimensional
face and a facet is an (n − 1)-dimensional face of an n-dimensional
polytope.

We can visualize this definition using the polytope from Example
1.12. The triangle has 3 vertices at (0, 0), (1, 0), (0, 1) and 3 edges,
the lines connecting each pair of vertices. Since the affine hull of the
triangle is R

2, the facets of this triangle are the 1-dimensional edges.
The above definitions have been true for all polytopes. However, this

paper is concerned with a specific type of polytope, the selfatope. The
following terms define the properties of selfatopes.

Definition 1.14. A lattice polytope is a polytope whose vertices all
have integer coordinates.

Definition 1.15. Let P be a lattice polytope. Then P has lattice-
free edges if each edge of P contains no lattice points other than its
vertices. Furthermore, a lattice line segment has lattice length 1 if the
only lattice points on the segment are its vertices.

Example 1.16. In this example we see combinations of lattice and
non-lattice polytopes with and without lattice-free edges.
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The polytope #1 is a lattice polytope with lattice-
free edges while polytope #2 has lattice-free edges
but is not a lattice polytope. Polytope #3 is a lat-
tice polytope, but does not have lattice-free edges,
and finally polytope #4 is neither lattice nor has
lattice-free edges.

2
1

3 4

Definition 1.17. Let P ⊆ R
n be a lattice polytope of dimension k

where k ≤ n. Let v be a vertex of P . Let wi be the nearest lattice
vectors on each edge incident to v. Then for P to be smooth, {wi − v}
should form part of a Z-basis for Z

n and the span of {wi − v} has
dimension k. If k = n, then this means wi − v forms a basis and

det





| |
w1 − v . . . wk − v

| |



 = ±1.

The n×n matrix formed in this process of determining smoothness for
vertex v of the full dimensional polytope P will be called the smoothness
matrix and denoted Wv.

Definition 1.18. A smooth, lattice polytope with lattice-free edges is
a selfatope. Furthermore, a selfatope in R

2 is a selfagon.

There are some standard examples of polytopes which, when sized
correctly, are selfatopes as well.

Definition 1.19. An n-simplex is the convex hull of n + 1 affinely
independent points. The standard n-simplex is the convex hull of the
standard basis vectors and (0, . . . , 0) : conv{e1, . . . , en, (0, . . . , 0)}.

Example 1.20. The following are the standard 0,1,2, and 3-simplices.

y

x

x

y

z

0−simplex 1−simplex
2−simplex

3−simplex

0 1

1

1

1

1

1

Definition 1.21. The standard n-cube ⊆ R
n is the convex hull of all

points whose coordinates are made up of 0’s and 1’s.
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Example 1.22.

x

x

y

z
y

0−cube 1−cube 2−cube

3−cube

As expected, placement of a selfatope in R
n does not change a self-

atope, as long as lattice points are preserved. That is, any selfatope
will be equivalent to a congruent selfatope, no matter its placement in
the hyperplane.

Definition 1.23. A translation of a polyope occurs when a vector b is
added to every point of the polytope.

Property 1.24. If P is a selfatope in R
n, then P ∼ P + b for any

b ∈ Z
n. In particular, −b may be a vertex of P , so we see that we can

translate any vertex of P to the origin.

Note that a translation by a vector b ∈ Z
n preserves all three se-

laftope properties. Because b is an integer vector, such a translation
will act like adding the same integer onto each corresponding coordinate
of all points in the selfatope. Thus, lattice vertices will translate to lat-
tice vertices while there will still be no lattice points within each edge.
Finally, the translated selfatope will still be smooth since the transla-
tion moves each lattice point an equal amount. Since this change is
equal for each lattice point, the smoothness matrix will not change.

Example 1.25. If we want to move the vertex (2,1) of the 10-gon
selfatope below to the origin, we must translate the entire selfagon by
the vector b = (−2,−1). A similar process can be carried out for any
of the vertices.

(0,0)(0,0)

(2,1)

b=+(−2,−1)

Through integer translations, we begin to see how two selfatopes can
be equivalent even if they are not in the same position. However, this
only begins to explain equivalence of selfatopes.
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2. Preserving Selfatope Properties

Now that we know what a selfatope is, we work to develop a criterion
for determining equivalence between selfatopes.

Theorem 2.1. Linear transformations that can be written as elements
of GL(n, Z) (with determinant ±1) preserve all properties of selfatopes.

Proof. Let x ∈ R
n denote a point in a selfatope, P . Let

A =





a11 . . . a1n

...
. . .

...
an1 . . . ann





be a matrix with elements in Z with determinant of ±1.
First we must prove that the described linear transformations pre-

serve lattice points and thus preserve the lattice vertices of the lattice
polytopes. The vertices of the new polytope created by the linear trans-
formation are found by calculating Ax for all vertices of the original
polytope. We see that

Ax =





a11 . . . a1n

...
. . .

...
an1 . . . ann









x1
...

xn



 =





a11x1 + . . . + a1nxn

...
an1x1 + . . . + annxn





Because aij, xi ∈ Z,
∑n

i=1 aijxi ∈ Z. Thus, the vertices of the new
polytope are also lattice points.

Next we must make sure the given linear transformations preserve
lattice-free edges. Let us take a moment to look at A−1. From linear
algebra, we see that A−1 = 1

det(A)
(Adj(A)) where Adj(A) is the adjoint

of A and det(A) is the determinant of A. Based on the definition of
the adjoint, Adj(A) will have integer elements because A has integer
elements. We defined A to have a determinant of ±1, so 1

det(A)
= ±1.

Thus, we can see that since A has integer elements, A−1 will have
integer elements as well.

Calculation shows 1 = det(I) = det(AA−1) = det(A) · det(A−1) =
±1 · det(A−1) which implies det(A−1) = ±1. Thus, we can conclude
that if A is a matrix with elements in Z with a determinant of ±1,
then A−1 is also a matrix with element is Z with a determinant of
±1. Importantly, we know that A maps lattice points to lattice points
because A is a matrix in GL(n, Z), thus we can conclude that A−1 will
also map lattice points to lattice points.
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Let’s assume for the moment that the original polytope P has lattice-
free edges but that the image of P under A, A(P ), does not. Specifi-
cally, let y be a non-lattice point on an edge of P such that Ay is a lat-
tice point on an edge of A(P ). But then A−1(Ay) = (A−1A)y = Iy = y.
However, we just found that A−1 maps lattice points to lattice points so
A−1 should map the lattice point Ay to a lattice point. But we defined
y to be a non-lattice point. Thus, we have a contradiction and we find
that if P has lattice-free edges, then A(P ) must also have lattice-free
edges.

Finally, such linear transformations must preserve smoothness. Let
v be a vertex of P and Wv be the smoothness matrix at v. Since
we defined P to be smooth, det(Wv) = ±1 for all v. In calculat-
ing smoothness for A(P ), we look at the determinant of AWv. But,
det(AWv) = det(A) · det(Wv) = ±1 · ±1 = ±1. Thus, the matrix A
preserves smoothness.

¤

Definition 2.2. A vertex of a polytope, P is in standard position if it
lies at (0, . . . , 0) and all adjacent edges lie along the coordinate axes.

Property 2.3. Through a linear transformation and a translation, any
vertex of a selfatope can be place in standard position.

This property follows directly from Theorem 2.1. Also, Theorem 2.1
allows comparison between selfatopes which appear distinct but should
be considered equivalent.

Proposition 2.4. Let P be a selfatope in R
2. Let v be the vertex of P

that is placed at the origin and let (a, b) and (c, d) be the two adjacent
vertices. Since P is a selfatope, we know that a, b, c, d ∈ Z and that

det

(

a b
c d

)

= ±1. The linear transformation

(

a c
b d

)

−1

will place the

vertex v in standard position.

Proof. Note that since ad − bc = ±1,

S =

(

a c
b d

)

−1

=

(

d −c
−b a

)

or

(

−d c
b −a

)

.

Calculation shows the determinants of these matrices are both ad −
bc = ±1 and a, b, c, d ∈ Z so S ∈ GL(2, Z) and meets the criterion of
Theorem 2.1. Also, if ad − bc = 1, then

S ·

(

a
b

)

=

(

d −c
−b a

)(

a
b

)

=

(

ad − bc
−ab + ab

)

=

(

1
0

)
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S ·

(

c
d

)

=

(

d −c
−b a

)(

c
d

)

=

(

cd − cd
−bc + ad

)

=

(

0
1

)

.

If, on the otherhand, ad − bc = −1, then ¤

S ·

(

a
b

)

=

(

−d c
b −a

)(

a
b

)

=

(

−ad + bc
ab − ab

)

=

(

1
0

)

S ·

(

c
d

)

=

(

−d c
b −a

)(

c
d

)

=

(

−cd + cd
bc − ad

)

=

(

0
1

)

.

Thus, this matrix does in fact map v into standard position.

Example 2.5. In this example we have two 10-gons in R
2. At first

glance they seem different. However, once vertex v is moved to the

origin using Property 1.24, the matrix

(

−1 1
−2 1

)

transforms the first

10-gon into the second by Proposition 2.4. Note that it is true that

det

(

−1 1
−2 1

)

= 1. Thus, we are able to see they are in fact equivalent

selfatopes.

v

The problem with this criterion is that it is usually difficult to find
the needed transformation matrix.

Linear Operators in R
2

This section focuses on linear operators in the form of 2 × 2 matri-
ces that preserve the three properties of selfatopes. There are several
standard linear transformations in R

2 which have a clear geometrical
interpretation. [1] Selfatopes respond differently to each of these trans-
formations. In this investigation, let P be a selfatope in R

2.
Identity: The identity matrix, I, and the negative of the identity

matrix, −I, that is

(

1 0
0 1

)

and

(

−1 0
0 −1

)

. We see that the deter-

minant of these two matrices are both 1. Thus, the I and −I should
preserve all the properties of selfatopes.

Let p = (p1, p2) be a point on P . Note, that Ip = (p1, p2) and
−Ip = (−p1,−p2). As expected, applying the identity matrix to P
fixes P . On the other hand, appling −I to P results in a reflection
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about the x- and y- axis. So, as expected from the theorem, I and −I
preserve the properties of selfatopes.

Example 2.6. Let P be the 2-cube, that is conv{(0, 0), (0, 1), (1, 0), (1, 1)}
Acting I and −I on this selfatope, we get:

P

P

y

y

x

x

x

x

y

y

−I

I

Thus, we can see that both I and −I preserve selfatope properties.

Scaling: Scaling by a matrix is a way to stretch or shrink a polytope

by a constant k. The general form of a scaling matrix is

(

k 0
0 k

)

.

Example 2.7. Let k = 2. Then, the scaling matrix

(

2 0
0 2

)

stretches

the 2-cube to the square with side length of two with vertices at
(0, 0), (0, 2), (2, 0), and (2, 2).

y

x

P

x

y

This new square does not have lattice-free edges. Moreover, det

(

2 0
0 2

)

=

4.

In general, the determinant is always going to be k2. Thus, scaling
only works when k = ±1, that is, only when the scaling matrix is equal
to I or −I.

Projections: The projections we are considering are projections of a
polytope in R

2 onto a line through the origin spanned by the unit vector

(u1, u2). The general form of a projection matrix is

(

u2
1 u1u2

u1u2 u2
2

)

. We

see that, in general, the determinant of this matrix is u2
1u

2
2 − u2

1u
2
2 =

0 6= ±1. However, because (u1, u2) is a unit vector, then it is also true

that
√

u2
1 + u2

2 = 1. The only integers that could meet this criteria
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are combinations of 0 and ±1. So we are actually left with only the
projections onto the x- and y-axes.

Example 2.8. Let P be the 2-cube and let us project P onto the line

y = x. Thus, (u1, u2) = (1, 1). Acting

(

1 1
1 1

)

on P we get:

y

x x

y

P

However, this line does not have lattice-free edges.

Thus, except for a few, select examples, projections onto a line in R
2

do not preserve the properties of selfatopes.
Reflections: The reflections we are considering are reflections of a

polytope in R
2 about a line. The general form of a reflection matrix is

(

a b
b −a

)

such that a2 +b2 = 1. We notice that the determinant of this

matrix is −a2 − b2 = −(a2 + b2) = −1. Thus, we might conclude that
any reflection would preserve the properties of selfatopes. However,
there are only a few combinations of integers such that a2 + b2 = 1. In
fact, only combinations of 0 and ±1 will meet this criteria. Thus, we
see that the only reflections that actually preserve our properties are
reflections about the x- and y-axes and the line y = x.

Rotations: We are considering rotations through an angle in the

R
2 plane. The general form of a rotation matrix is

(

a −b
b a

)

such that

a2 + b2 = 1. So, the determinant of this matrix is a2 + b2 = 1 by defini-
tion. However, we run into the same problem we had with reflections.
Although in theory any rotation would work, our limitations of integer
values for the matrix elements restricts a and b to be combinations of 0
and ±1. So, we are only allowed rotations of multiples of 90◦. Since a
rotation is the same as two reflections, so it makes sense that the limits
on rotations correspond to the limitations of reflections.

Shears: There are two types of shears we will consider; horizontal
and vertical. Shearing can be pictured as putting your hand on a side of
a big block of Jello and pushing parallel to that side. The general form

of a horizontal shear is

(

1 k
0 1

)

and of a vertical shear it is

(

1 0
k 1

)

.
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Example 2.9. We can shear the 2-cube with vertices at (0, 0), (0, 1), (1, 0),

and (1, 1) by the matrix

(

1 5
0 1

)

. With this shear, we will get a paral-

lelogram with vertices at (0, 0), (1, 0), (5, 1) and (6, 1) respectively.

y

x

P

x

y

5 6

1

A calculation shows that this is in fact a selfatope.

In general, the determinant of a shear matrix is 1. Thus, shears do
in fact preserve the properties of selfatopes.

We can conclude that not all linear operators preserve the properties
of selfatopes. While all linear operators that are elements of GL(2, Z)
preserve properties of selfatopes, some matrices in GL(2, Z) can be
classifed as specific geometric operations. We have considered some
linear operations and found that rotations, reflections, and shears pre-
serve the properties of interest. However, there are only a few, select
rotations and reflections which meet the requirements for our specified
matrices. Scalings and projections, on the other hand, do not preserve
the properties of selfatopes.

Of course, linear transformations do not create new selfatopes, but
simply change the appearance of those we know. There are, however,
ways to generate new selfatopes from existing ones.

3. Pyramiding of Selfatopes

Pyramiding is a method of creating polytopes in R
n from polytopes

in R
n−1. Unlike linear transformations, pyramiding creates polytopes

that are not equivalent.

Definition 3.1. If P is a d-dimensional polytope in R
n where n > d,

then the pyramid over P is pyr(P ) ≡ conv(P, p), where p /∈ aff(P ).
The pyramid has dimension d + 1.

In order to investigate pyramids in relation to selfatopes, smoothness
will be considered in R

d and R
d+1. The new point, p, must be placed

on a lattice point, otherwise it will be impossible for the new polytope
to have vertices on lattice points.

First, we will clarify how pyramids are to be created. We start with
a polytope, P , of dimension d in R

d. To create a pyramid of P , we
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embed P in the xd+1 = 0 hyperplane of R
d+1. For example, the point

x = (x1, . . . , xd) ∈ P is placed at (x1, . . . , xd, 0) in R
d+1. Then, the

new point, p, is placed in R
d+1 such that for p, xd+1 6= 0.

Theorem 3.2. All selfatope pyramids must come from selfatopes and
are in fact simplices.

Proof. The idea of this proof is to show that selfatope pyramids cannot
be smooth, lattice polytopes with lattice-free edges unless the original
polytope was also a smooth, lattice polytope with lattice-free edges.

Suppose that a pyramid is created from a non-lattice polytope. When
a pyramid is constructed, the original vertices remain in the new poly-
tope. Thus, the new polytope created in pyramiding will continue to
have the non-lattice point vertices and so will not be a lattice poly-
tope. Therefore, in order to create a lattice polytope in pyramiding,
the original polytope must be a lattice polytope.

Now suppose that a pyramid is created from a polytope without
lattice-free edges. When a new pyramid is built, the original edges
are incorporated into the new, higher dimensional polytope. Thus, the
pyramid will not have lattice-free edges. Therefore, to build a polytope
with lattice-free edges by pyramiding, the original polytope must also
have lattice-free edges.

Finally, suppose that a pyramid is created from a polytope in R
d that

has at least one vertex that is not smooth, say vertex v = (v1, . . . , vd).
Let w1, . . . , wd be the nearest lattice vectors on edges incident to vi.
We check for smoothness by finding the determinant of

M =





w11 − v1 . . . wn1 − v1
...

...
w1n − vn . . . wnn − vn



 .

Since we are assuming P is not smooth at v, then det(M) 6= ±1. Next,
to form the pyramid the original polytope is placed in the xn+1 = 0
hyperplane of R

n+1 and a point, p, is added anywhere in R
n+1, except

the 0 hyperplane, say at (p1, . . . , pn, pn+1) where pn+1 6= 0. The new
vertex has the following for it’s “smooth” matrix:

S =









w11 − v1 . . . wn1 − v1 p1 − v1
...

...
...

w1n − vn . . . wnn − vn pn − vn

0 . . . 0 pn+1









.

But then, expanding along the bottom row shows that det(S) = ± det(M)·
pn+1. However, if det(M) 6= ±1, then for det(S) to equal ±1, pn+1 =
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1
det(M)

. However, pn+1 must be a lattice point in order for the pyramid

to be a lattice polytope, and this is only possible if det(M) = ±1.
Thus we have a contradiction and it is true that for the pyramid to be
smooth, the original polyope must be smooth.

Note that this computation also shows that, for the pyramid to be
smooth, pn+1 must equal ±1 if det(S) = ±1. Thus, when creating
a pyramid from a polytope, the new point, p must be placed in the
hyperplane one above or one below the xn+1 = 0 hyperplane of R

n+1.
Now that we know that pyramiding a selfatope returns a selfatope,

it remains to prove that this process only works when the origianl
polytope is a simplex.

Definition 3.3. Let a set of n points in R
n be in linearly general

position if every k of them affinely span a k − 1 hyperplane.

For example, if four points are in linearly general position, any three
of those points span a 2-plane. By definition of smoothness, it is not
possible for a polytope in R

n to have a vertex with more than n edges
incident to it. So, for a pyramid to be smooth at p, p must have ≤ n
adjacent edges which implies pyr(P, p) has ≤ n + 1 vertices. However,
for P to be an n-dimensional polytope, it must have ≥ n+1 vertices. If
P had less than n+1 vertices, they would lie in a n−1 hyperplane and
then P would not be n-dimensional. Thus, if we have a polytope that
is full dimensional in R

n and is smooth, it has exactly n + 1 vertices.
However, by definition, a polytope in R

n with n+1 vertices is equivalent
to the n-simplex. Thus, every selfatope pyramid is a simplex.

¤

Example 3.4. Let P be a full dimensional selfatope in R
2 over which

we want to pyramid. By Theorem 3.2, P must be the 2-simplex, that
is, a triangle. Next we place P into the z = 0-hyperplane and add
in a point p. By Theorem 3.2, we know that p must be placed in the
z = ±1-hyperplane. But, then pyr(P ) is simply a selfatope in R

3 with
4 vertices. By Definition 1.19, we know this to be the 3-simplex.

x

y

z

1

1

1

x

y

P
P

pyr(P)

Although pyramiding, gave us an interesting way to create selaftopes,
the simplices generated are not truly new selfatopes for us to study.
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4. The Chopping Method

The 3P Chop Method of constructing selfatopes from selfatopes was
first observed by David Cox. The Chopping Method provides a new
way to create selfatopes, provided certain criterion are met.

Definition 4.1. Let P ⊆ R
n be a full dimensional selfatope. With the

Chopping Method, an n-simplex is cut off at a vertex, v, of P . The new
polytope is Chop(P ).

The Chopping Method is easily visualized in R
2. Since P is a full

dimensional selfatope, then every vertex, v has two edges adjacent to it.
If a selfatope scaled by 2 or greater, then between every set of vertices,
there is at least one lattice point on each edge. A 2-simplex is simply
a triangle so cutting off a 2-simplex reduces to connecting the lattice
points closest to v along the adjacent edges.

v v

v

1

2

v
2

w

w1

3

w4

w

Thus, with the Chopping Method, the dotted edge is added while the
vertex v is cut off.

While the properties of the polytope P determine whether or not
Chop(P ) is a selfatope, there is a clear property regarding smoothness
of Chop(P ).

Lemma 4.2. Let P ⊆ R
n be a lattice polytope and let mP be P scaled

by a factor of m where m ≥ 2 and m ∈ Z. Let v be a vertex of P . If P
is smooth at v, then the vertices constructed by cutting off an n-simplex
at v are also smooth.

Proof. We will look at mP ⊆ R
n, a lattice polytope with vertex v

smooth. Using a translation, Property 1.24 implies we can move v to
the origin. Because there are n adjacent edges to v, and P ⊆ R

n, we
can transform all the edges into standard position by Property 2.3. A
set of n − 1 edges will lie in the xn = 0 hyperplane with the last edge
not in the span of this plane. Without loss of generality we let w be
the first lattice point away from v on this n-th edge. Keeping this
coordinate system in mind we can write the smoothness matrix of v as
Idn, the n × n identity matrix, which has a determinant of 1.
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Now let us look at any one of the vertices created by cutting mP at
v, say v1. Ths smoothness matrix of mP at v1 is













2 − 1 0 0 . . . 0
−1 1 0 . . . 0
...

...
−1 0 . . . 1 0
−1 0 . . . 0 1













=













1 0 0 . . . 0
−1 1 0 . . . 0
...

...
−1 0 . . . 1 0
−1 0 . . . 0 1













.

But note that this matrix has a determinant of 1. Thus, v1 is a smooth
vertex. Since v1 was arbitrary, this process can be repeated for any of
the new vertices. Thus, every new vertex of the polytope formed by
cutting a simplex off of each vertex of mP is smooth and therefore the
new polytope is smooth.

¤

5. Creating Selfatopes Using the Chopping Method

Chopping smooth vertices of certain polytopes preserves smoothness.
However, the Chopping Method, when joined with scaling, can also be
used to create selfatopes from selfatopes.

Algorithm 5.1. The 3P Chop Method

(1) Begin with a selfatope, P .
(2) Scale P up by a factor of 3, creating 3P .
(3) Perform the Chopping Method on each of the vertices of 3P ,

creating Chop(3P ).

The 3P Chop Method is in fact a handy method to create selfatopes.

Theorem 5.2. When the 3P Chop Method is performed on a selfatope,
P , then Chop(3P ) will also be a selfatope.

Proof. Let v be a vertex of 3P with vi the nearest lattice point on some
edge adjacent to v. Thus, vij is the j-th component of the nearest lattice
point on the i-th edge adjacent to v.

For Chop(3P ) to be a selfatope, it must be a lattice polytope with
lattice-free edges and be smooth at each vertex.

By construction, Chop(3P ) is formed by making cuts at lattice points
of 3P . Thus, Chop(3P ) will be a lattice polytope.

Next, we look to find if Chop(3P ) has lattice-free edges. In this
construction, there are two types of edges; first the edges created by
the cuts, and second the edges of 3P left by the cuts. For each pair
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vi, vj, we have:

v

v

vj

i

where the solid edges are of lattice length one. In this process we delete
the solid edges and add the dotted edge. We know by Property 2.3
that any two vectors of lattice length one can be transformed into the
standard position at the origin. This implies that the edge connecting
vi to vj must have lattice length one as well. Thus, the new edges
created by the cuts are lattice free. Now we only have to look at the
edges of 3P left by the cuts. These edges are created from an edge
of lattice length three and then a cut is made at each vertex. These
cuts remove a section of lattice length one from the edge. Because each
edge has two vertices, this means each original edge loses two lattice
length sections. Since we started with lattice length three, the edge
remaining must have lattice length one. Thus, for any type of edge of
C, the edges are lattice-free.

To see that Chop(3P ) is smooth at each vertex, we apply Lemma
4.2 at each vertex of Chop(3P ). Thus, we see that Chop(3P ) is in fact
smooth.

¤

Let us look at an example of the 3P Chop to create a selfatope.

Example 5.3. Let P be the standard square in R
2. Then 3P is simply

the square scaled up by 3 and Chop(3P ) is the 8-gon selfatope.

Chop(3P)3PP

The Chopping Method also provides a way to create any selfagon
with 3n sides from a selfagon with 2n sides.

Algorithm 5.4. The 2P Chop Method

(1) Start with an 2n-gon selfatope P ∈ R
2, where P has dimension

two.
(2) Scale P up by 2 to generate 2P .
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(3) Perform the Chop Method on half of the vertices of 2P , that is
on every other vertex.

As an example, we will let n = 3 so P is the six-gon in R
2.

x

y

x

y

v v

vv

v

1 2

v3

45

6

Step 1 Step 2 Step 3

x

v1 2

3

7

8

9

y

w

w

w

w

w

w

w
4

5

6w

So, from the original six-gon, we cut off vertices v2, v4, and v6. With
this process, we have now created a selfatope with 3n sides. In our
example, we have created the 9-gon. Of course, this method can be
used to create a multitude of selfatopes.

Theorem 5.5. In R
2, if we start with a 2n sided selfatope P , the 2P

Chop Method from Algorithm 5.4 creates a 3n sided selfatope, Q.

Proof. Let v be a vertex of 2P . Let f1 and f2 be the two edges adjacent
to v with v1 and v2 the closest lattice points to v along these edges,
respectively.

For Q to be a selfatope, Q must be lattice, have lattice-free edges,
and be smooth at each vertex.

First we will see if Q is a lattice polytope. By construction, Q is
formed by making cuts at half of the vertices of 2P . The cuts made to
form Q are made by connecting v1 and v2, for all pairs of edges adjacent
to half of the v ∈ 2P . Thus, the new vertices of Q are now at v1 and
v2. Since v1 and v2 were defined to be lattice points, this implies that
Q is a lattice polytope.

Now we will find if Q has lattice-free edges. In this construction,
there are two types of edges; first the edges created by the cuts, and
second, the edges of 2P left by the cuts.

First, for the pair of lattice points, v1, v2, we have:

v

v

v2

1

where the solid edges are of lattice length one. In this process we
delete the solid edges and add the dotted edge. By Property 2.3, any
two vectors of lattice length one can be transformed into the standard
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position at the origin. This implies that the edge connecting v1 and v2

must have lattice length one as well. Thus, the new edges created by
the cuts are lattice-free.

Now we only have to look at the edges of 2P left by the cuts. These
edges are created from an edge of lattice length two and then a cut
is made at half of the vertices. These cuts remove one lattice length
section of the edge. Because each edge has two vertices, this means
each original edge loses one lattice length section. Since we started
with lattice length two, the edge remaining must have lattice length
one. Thus, for any type of edge of Q, the edges are lattice-free.

To see that Q is smooth, we first note that in Q, there are two types
of vertices. First there are the vertices of 2P which were not cut off.
Since we started with a selfatope, Q is smooth at these vertices. The
other type of vertices are those created by the cuts in the algorithm.
By Lemma 4.2, we know these vertices are also smooth. Thus, in R

2,
any polytope created with this method will be smooth.

Now we know that Q is in fact a selfatope, it is left to prove that Q
has 3n sides. Because we are working in R

2, there are an equal number
of edges and vertices of P and 2P , namely 2n of each. In the algorithm,
half of the vertices, n of them, are cut off and two more vertices are
created in place of each vertex. So, n vertices of the original 2n vertices
are cut off and 2n are added on. This implies there are 2n−n+2n = 3n
vertices in Q. But, we are still in R

2 so Q must also have 3n sides.
Therefore, the selfatope created by this algorithm will have 3n sides
given the original selfatope had 2n sides.

¤

Thus, with these two algorithms, we are now able to create any
selfagon with 2n and 3n sides. It still remains to find an algorithm to
create other selfagons as well as selfatopes in any dimension.
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