Jessica Sidman
Professor of Mathematics
Department of Mathematics and Statistics

Undergraduate co-authors are indicated with a *.

  • J. Sidman, A. Lee-St. John, S. Stark*, L. Theran, X. Yu*, Algorithms for detecting dependencies and rigid subsystems for CAD. James Farre, Helena Kleinschmidt, arXiv:1306.1572
  • G. Burnham*, Z. Rosen, J. Sidman, P. Vermeire, Line arrangements modeling curves of high degree: equations, syzygies and secants, Recent Advances in Algebraic Geometry, London Mathematical Society Lecture Notes Series, 417, to appear. arXiv:1201.5010.
  • J. Farre*, H. Kleinschmidt*, A. Lee-St.John, J. Sidman, S. Stark*, and L. Theran, Detecting dependencies in geometric constraint systems, 10th International Workshop on Automated Deduction in Geometry, July 9-11, 2014, 147-166.
  • C. Clement*, A. Lee-St. John, J. Sidma, Hyperbanana Graph, Proceedings of 25th Canadian Conference on Computational Geometry, pages 199-204, 2013. arXiv:1308.3281
  • H. Schenck and J. Sidman, Commutative algebra of subspace arrangements and hyperplane arrangements, in Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday, 639-666, Springer Verlag, New York, 2013.
  • A. Lee-St.John, J. Sidman, Combinatorics and the Rigidity of CAD Systems, Computer-Aided Design, 45 (2013), no. 2, 473-482.
  • J. Sidman, An introduction to Algebraic Geometry: Polygons, Parameterizations, and Equations, American Mathematical Monthly, Volume 119, Number 3, March 2012 , pp. 183-198.
  • J. Sidman, G. Smith, Linear determinantal equations for all projective schemes. arxiv:0910.224, Algebra and Number Theory, Vol. 5 (2011), No. 8, 1041-1061.
  • J. Sidman, P. Vermeire, Equations defining secant varieties: geometry and computation. Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., 6, Springer, Berlin, 2011.
  • J. Sidman, P. Vermeire, Syzygies of the secant variety of a curve, math.AG/0806.3056, Algebra and Number Theory vol. 3, No. 4, 2009.
  • J. Sidman, S. Sullivant, Prolongations and computational algebra, math.AC/0611696, Canadian J. Math, Vol. 61, No. 4, 2009, p. 930-949.
  • J. Sidman, Resolutions and subspace arrangements, Syzygies and Hilbert Functions, 249-265, Lect. Notes Pure Appl. Math., 254, Chapman&Hall/CFC, Boca Raton, FL, 2007.
  • J. Sidman, A. Van Tuyl, H. Wang, Multigraded regularity: coarsenings and resolutions, math.AC/0505421, J. Algebra, (2006) vol. 301, no.2, 703-727.
  • D. Cox and J. Sidman, Secant varieties of toric varieties, math.AG/0502344. , J. Pure Appl. Alg. (2007) vol. 209, no. 3, 651-669.
  • Slides from AMS Special Session on Algebraic Statistics, January 2006.
  • J. Sidman and A. Van Tuyl, Multigraded regularity: syzygies and fat points, math.AC/0405247., Beitr\"age (2006) vol. 47, no. 1, 67-87. (Please note that an incorrect version was printed in the journal due to a mixup of electronic files. The journal has posted the correct version online. The same version can be found on the arxiv.)
  • A. Björner, I. Peeva, J. Sidman, Subspace arrangements defined  by products of linear forms, math.CO/0401373, J. Lond. Math. Soc. vol. 71 (2005) no. 2, 273-288.
  • A. Conca, J. Sidman, Generic Initial ideals of points and curves, math.AC/0402418, J. Symb. Comp. (2005) vol. 40, 1023-1038.
  • J. Sidman, Defining equations of subspace arrangements embedded in reflection arrangements, math.CO/0307280, IMRN (2004), no. 15, 713-727.
  • D. Eisenbud, Lectures on the geometry of syzygies. With a chapter by Jessica Sidman. Math. Sci. Res. Inst. Publ., 51, Trends in commutative algebra, 115-152, Cambridge Univ. Press, Cambridge, 2004.
  • H. Derksen, J. Sidman, Castelnuovo-Mumford regularity by approximation , math.AC/0211279, Adv. in Math. (2004) vol. 188, no. 1, 104-123.
  • H. Derksen, J. Sidman, A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements, math.AG/0109035, Adv. in Math. (2002), vol. 172, no. 2, 151-157.
  • J. Sidman, On the Castelnuovo-Mumford regularity of ideal sheaves, math.AG/0110184 , Adv. in Geom. 2 (2002), no. 3, 219-229.
  • J. Sidman, On the Castelnuovo-Mumford regularity of subspace arrangements, thesis (ps).