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1 Introduction

The theory of numbers is an area of mathematics which deals with the prop-

erties of whole and rational numbers. Analytic number theory is one of its

branches, which involves study of arithmetical functions, their properties and

the interrelationships that exist among these functions. In this paper I will

introduce some of the three very important examples of arithmetical func-

tions, as well as a concept of the possible operations we can use with them.

There are four propositions which are mentioned in this paper and I have

used the definitions of these arithmetical functions and some Lemmas which

reflect their properties, in order to prove them.

2 Definitions

Here are some definitions to illustrate how the functions work and describe

some of their most useful properties.

2.1 Arithmetical function

A real or complex valued function with domain the positive integers is called

an arithmetical or a number-theoretic function.

2.2 Multiplicative functions

An arithmetical function f is called multiplicative if f is not identically zero

and if f(mn) = f(m)f(n) whenever (m,n) = 1. A multiplicative function f

is called completely multiplicative if f(mn) = f(m)f(n) for all m,n.
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2.3 The Möbius function

The Möbius function is an arithmetical function, which takes the following

values:

µ(1) = 1

and for n = pa1
1 ∗ pa2

2 ∗ ... ∗ pam
m , where n > 1, we define µ(n) to be:

µ(n) = (−1)m if a1 = a2 = ... = am = 1,

µ(n) = 0 otherwise.

This definition implies that the Möbius function will be zero if and only

if n has a square factor larger than one. Let us look at a short table of the

values of µ(n) for some positive integers:

n µ(n)

1 1

2 -1

3 -1

4 0

5 -1

6 1

7 -1

8 0

9 0

10 1

The Möbius function is an example of a multiplicative, but not completely

multiplicative function, since φ(4) = 0 but φ(2)φ(2) = 1. One if its most
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important applications is in the formulas for the Euler totient, which is the

next function I will define.

2.4 The Euler totient

The Euler totient function is defined to be the number of positive integers

which are less or equal to an integer and are relatively prime to that integer:

for n ≥ 1, the Euler totient φ(n) is:

φ(n) =
n∑

k=1

‘1,

where the ‘ indicates that the sum is only over the integers relatively prime

to n. Below is a table of the values of φ(n) for some small positive integers:

n φ(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

There is a formula for the divisor sum which is one of the most useful

properties of the Euler totient:
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Lemma 1: for n ≥ 1 we have

∑

d|n
φ(d) = n.

Since the Euler totient is the number of positive integers relatively prime

to n we can calculate φ(n) as a product over the prime divisors of n, where

n ≥ 1:

Lemma 2:

φ(n) = n ∗
∏

p|n
(1− 1

p
).

The following formula gives a relation between the Euler totient and the

Möbius function:

Lemma 3: for n ≥ 1 we have:

φ(n) =
∑

d|n
µ(d)

n

d
.

The Euler totient is another multiplicative function which is not com-

pletely multiplicative because φ(4) = 2 but φ(2)φ(2) = 1.

2.5 The divisor functions

For a real or a complex number α and an integer n ≥ 1 we define

σα(n) =
∑

d|n
dα

to be the sum of the αth powers of the divisors of n, called the divisor function

σα(n). These functions are also multiplicative.
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If we look at the trivial case when α = 0 we say that σ0(n) is the number

of divisors of n. In the case that α = 1 we define σ1(n) as the sum of the

divisors of n. Since the function is multiplicative we know that for n =

pa1
1 pa2

2 ...pam
m then σα(n) = σα(pa1

1 σα(pa2
2 )...σα(pam

m ).There is a formula for the

divisor function of an integer power of a prime:

Lemma 3:

σα(pa) = 1α + pα + p2α + ... + paα =
pα(a+1) − 1

pα − 1
if α 6= 0

σ0(p
a) = a + 1 if α = 0

The next definition I will introduce is the Dirichlet product of arithmetical

functions, which is represented by a sum, occurring very often in number

theory.

2.6 Dirichlet product of arithmetical functions

The Dirichlet product of two arithmetical functions f and g is defined to be

an arithmetical function h(n) such that:

(f ∗ g)(n) = h(n) =
∑

d|n
f(d)g(

n

d
).

If we look at the formula for the relation between the Euler totient and

the Möbius function, we will see that for a function N , such that N(n) = n

then φ = µ ∗N .
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3 Propositions and their proofs

3.1 Proposition 1

For a positive integer n we have that:

n

φ(n)
=

∑

d|n

µ2(d)

φ(d)

where the sum is over all the divisors of n.

Proof : We know by Lemma 2 that

φ(n) = n ∗
∏

p|n
(1− 1

p
)

so if we let n = pa1
1 ∗ pa2

2 ∗ ....... ∗ pam
m , we can express φ(n) in the following

φ(n) = n ∗ (1− 1

p1

) ∗ (1− 1

p2

) ∗ ....... ∗ (1− 1

pm

)

Taking a common denominator for each of the terms in the parentheses

we see that:

φ(n) =
n ∗ (p1 − 1) ∗ (p2 − 1) ∗ ....... ∗ (pm − 1)

p1 ∗ p2 ∗ ....... ∗ pm

.

Thus we have that

n

φ(n)
=

n
n∗(p1−1)∗(p2−1)∗.......∗(pm−1)

p1∗p2∗.......∗pm

=
p1 ∗ p2 ∗ ....... ∗ pm

(p1 − 1) ∗ (p2 − 1) ∗ ....... ∗ (pm − 1)

This equation is our result for the left hand side of the identity we have

to prove. We will denote n
φ(n)

with the initials LHS for the rest of the proof.
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Now we look at the right hand side of the identity above. From the

definition of the Möbius function we know that for n = pa1
1 ∗ pa2

2 ∗ ....... ∗ pam
m

µ(n) = (−1)m and µ(n) = 0, when n has a square term. Therefore µ2(d) = 1

if d has no square term and µ2(d) = 0 if d has a square term. Thus our sum

will be over only the square free divisors of n since if a divisor is not square

free we will have a zero term. For the rest of this paper d1 will represent a

divisor of n which is square free:

∑

d1|n

µ2(d1)

φ(d1)
=

∑

d1|n

1

φ(d1)

Since d1 is square free d1 will be any product of the prime factors of n,

where each prime could be used only once in the prime factorization of each

divisor d1. The last statement means that d1 takes on each of the values

1, p1, ..., pm, p1 ∗ p2, p1 ∗ p3, ..., pm−1 ∗ pm, p1 ∗ p2 ∗ p3, ............., p1 ∗ p2 ∗ .... ∗ pm.

The RHS will thus become

∑

d1|n

1

φ(d1)
=

1

φ(1)
+

1

φ(p1)
+ ....... +

1

φ(p1 ∗ p2)
+ ..... +

1

φ(p1 ∗ p2 ∗ ..... ∗ pm)

∑

d1|n

1

φ(d1)
= 1+

1

p1 − 1
+....+

1

(p1 − 1) ∗ (p2 − 1)
+.....+

1

(p1 − 1) ∗ ..... ∗ (pm − 1)

The common denominator of this sum will be (p1−1)∗(p2−1)∗.....(pm−1),

so after we get the sum over a common denominator the right hand side

becomes:

RHS =
(p1 − 1) ∗ ... ∗ (pm − 1) + (p2 − 1) ∗ ... ∗ (pm − 1) + .... + (pm − 1) + .... + 1

(p1 − 1) ∗ (p2 − 1) ∗ ... ∗ (pm − 1)
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We can now rearrange the terms in the numerator, starting with the last

one and for the numerator of the right hand side, RHSN , we get the following:

RHSN = 1+(p1−1)+...+(pm−1)+(p1−1)∗(p2−1)+....+(p1−1)∗(p2−1)∗...∗(pm−1)

When we look carefully at each of the terms in this equation we can see

that each term is actually the φ function of some prime or of some product

of primes. We can therefore rewrite the numerator as:

RHSN = φ(1) + φ(p1) + ... + φ(pm) + φ(p1 ∗ p2) + ......... + φ(p1 ∗ p2 ∗ ... ∗ pm),

Thus for the RHSN we find that:

RHSN =
∑

l|p1∗p2∗...∗pm

φ(l)

By Lemma 1 we know that:

∑

d|n
φ(d) = n,

thus when n = p1p2...pm we have the RHSN = p1p2...pm. The right hand

side of the identity we want to prove becomes RHS = p1∗...∗pm

(p1−1)∗...∗(pm−1)
and

since this equals the LHS, our identity is proven:

n

φ(n)
=

∑

d|n

µ2(d)

φ(d)
.
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3.2 Proposition 2

For all n with at most 8 distinct prime factors we have that φ(n) > n
6
.

Proof : We will first prove the proposition for an n with 8 distinct prime

factors. Let n = pa1
1 pa2

2 ...pa8
8 so using Lemma 2 for the Euler totient we see

that:

φ(n) = pa1
1 pa2

2 ...pa8
8 (1− 1

p1

)(1− 1

p2

)...(1− 1

p8

)

Since p1, p2, p3, p4, p5, p6, p7, p8 are distinct prime factors we know that

p1 ≥ 2, p2 ≥ 3, p3 ≥ 5, p4 ≥ 7, p5 ≥ 11, p6 ≥ 13, p7 ≥ 17, p8 ≥ 19, because

these are the first 8 distinct primes. Therefore 1
p1
≤ 1

2
, ..., 1

p7
≤ 1

17
, 1

p8
≤ 1

19

and then (1− 1
p1

) ≥ (1− 1
2
), ...(1− 1

p8
) ≥ (1− 1

19
). We can now substitute in

the equation for φ(n) and since we will substitute each term in parentheses

with a term which is less or equal to the initial one we will get:

φ(n) ≥ n(1− 1

2
)...(1− 1

19
),

therefore

φ(n) ≥ n
1

2
.
2

3
.
4

5
.
6

7
.
10

11
.
12

13
.
16

17
.
18

19
,

and then φ(n) ≥ n.1658880
9699690

, so φ(n) ≥ 0, 171n. But n
6
≈ 0, 167n, which means

that φ(n) > n
6

for n = pa1
1 ...pa8

8 .

Each of the factors (1− 1
p1

), (1− 1
p2

), ..., (1− 1
p8

) is less that one since the

smallest possible prime is two, so each of the terms in parentheses will be

less than one, which means that when we multiply the product by it, we will

decrease its value. So if our integer n has less than 8 distinct prime factors
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the value for its Euler totient will be greater than the value of the Euler

totient of an integer with 8 distinct prime factors. Thus, we have proved

that for all integers n with 8 or less distinct prime factors

φ(n) >
n

6
.

3.3 Proposition 3

Let f(x) be defined for all rational x in 0 ≤ x ≤ 1 and let

F (n) =
n∑

k=1

f(
k

n
)

F ∗(n) =
n∑

k=1
(k,n)=1

f(
k

n
)

Then

A)F ∗ = µ ∗ F , the Dirichlet product of µ and F .

Proof : Let us look at the Dirichlet product of the two functions.

µ ∗ F =
∑

d|n
µ(d)F (

n

d
) =

∑

d|n
µ(d)

n
d∑

k=1

f(
kd

n
).

Again, since we have the Möbius function all divisors d, which are not

square free will give us zero for the sum. We will denote the square free

divisors by d1 and let n = pa1
1 pa2

2 ...pam
m . Then the divisors d1 will be all the

primes p1, ..., pm and all the possible products of these primes. The Möbius

function will take the values -1 and 1, when we have odd and even number of

primes in our divisors, respectively. Then our Dirichlet product will become:
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µ ∗ F =
∑

d1|n
µ(d1)

n
d1∑

k=1

f(
kd1

n
) = A

A = F (n)−F (
n

p1

)−...−F (
n

pm

)+F (
n

p1p2

)+...+F (
n

pm−1pm

)−....+(−1)mF (1),

and when we substitute with the formula we have for F (n) we get:

A =
n∑

k=1

f(
k

n
)−

n
p1∑

k=1

f(
kp1

n
)− ...−

n
pm∑

k=1

f(
kpm

n
) +

n
p1p2∑

k=1

f(
kp1p2

n
) + ...

+

n
pm−1pm∑

k=1

f(
kpm−1pm

n
)− ... + (−1)m

n
p1...pm∑

k=1

f(
kp1...pm

n
).

We know that

F ∗(n) =
n∑

k=1
(k,n)=1

f(
k

n
) =

n∑

k=1

f(
k

n
)−

n∑

k=1
(k,n)6=1

f(
k

n
)

Let us look at the second term in the last difference. We have that

(k, n) 6= 1 which means that k will have at least one of the prime factors of

n. Thus, k ∈ {pibi|i ∈ [1,m], bi ∈ Z∗} and since we know that k ≤ n, then

pibi ≤ n and therefore for each value of i, bi ≤ n
pi

. We can then rewrite the

second term in our difference as the sum of the sums with each of the bis as a

variable. But since we are letting bi be anything less than n
pi

each of the sums

will count the factors with more than one distinct prime factor of n in the

numerator of f( k
n
) twice. This observation will be true for all the subsequent

sums, too - the sums which start with two distinct prime factors of n in the

variable bi will count all the other sums with three prime distinct factors of
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n twice and so on. This way when we are writing out the sum and start with

the first group of sums - the ones for which bi has at least one of the distinct

prime factors of n - we will have to subtract the second group of sums - with

2 or more of the distinct prime factors of n, which on its own will subtract

all the sums with 3 or more of the distinct prime factors of n, thus we will

have to add those sums and then we would have added twice the next sums

and so on. Therefore for the second term we will get an alternating series

of sums, so that we can account for all the integers less than n, which have

common factors with n and get rid of all the terms which repeat. Thus,

n∑

k=1
(k,n) 6=1

f(
k

n
) =

n
p1∑

k=1

f(
kp1

n
) + ... +

n
pm∑

k=1

f(
kpm

n
)−

n
p1p2∑

k=1

f(
kp1p2

n
)− ...

−
n

pm−1pm∑

k=1

f(
kpm−1pm

n
) + ... + (−1)m

n
p1...pm∑

k=1

f(
kp1...pm

n
)

We can now substitute in the formula we derived for F ∗(n) and it will

become:

F ∗(n) =
n∑

k=1
(k,n)=1

f(
k

n
) =

n∑

k=1

f(
k

n
)−[

n
p1∑

k=1

f(
kp1

n
)+...+

n
pm∑

k=1

f(
kpm

n
)−

n
p1p2∑

k=1

f(
kp1p2

n
)−...

−
n

pm−1pm∑

k=1

f(
kpm−1pm

n
) + ... + (−1)m

n
p1...pm∑

k=1

f(
kp1...pm

n
)]

Opening the parenthesis and applying the negative sign in front of them

we will get:
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F ∗(n) =
n∑

k=1

f(
k

n
)−

n
p1∑

k=1

f(
kp1

n
)− ...−

n
pm∑

k=1

f(
kpm

n
) +

n
p1p2∑

k=1

f(
kp1p2

n
) + ...

+

n
pm−1pm∑

k=1

f(
kpm−1pm

n
)− ... + (−1)m

n
p1...pm∑

k=1

f(
kp1...pm

n
),

which is exactly our result for
∑

d1|n µ(d1)
∑ n

d1
k=1 f(kd1

n
) = µ ∗F . We have

proved the proposition.

B)µ(n) is the sum of the primitive nth roots of unity:

µ(n) =
n∑

k=1
(k,n)=1

e2πik/n

Proof : Let f(x) = e2πix - this is a valid function for f(x) because the

exponential function is defined for all rational x satisfying the condition on

x. Then for n = pa1
1 pa2

2 ...pam
m :

F (n) =
n∑

k=1

e2πi k
n

F ∗(n) =
n∑

k=1
(k,n)=1

e2πi k
n

Let us look at the right hand side of the identity we want to prove. We

will denote the square free divisors of n d1 and the divisors with squares in

them d2, where d1 6= n and d2 6= n. We can use part A of Proposition 3

and substitute in the formula for the Dirichlet product. Thus, since F ∗(n) =

(µ ∗ F )(n):
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F ∗(n) =
∑

d|n
µ(d)F (

n

d
) = µ(n)F (1) +

∑

d2|n
µ(d2)F (

n

d2

) +
∑

d1|n
µ(d1)F (

n

d1

)

When the argument of the Möbius function has a square its value is 0.

Therefore, the sum over the square divisors is zero. Let us look at the other

terms in F ∗.For n = 1

F (1) =
n∑

k=1

e2πik = e2πi = cos(2π) + isin(2π) = 1 + 0 = 1,

thus F ∗(n) = µ(n) +
∑

d1|n
µ(d1)F (

n

d1

).

We will now solve the second term in our equation.

F (
n

d1

) =

n
d1∑

k=1

e2πi
d1k
n = e2πi

d1
n + e2πi

2d1
n + ... + e2πi

d1( n
d1
−2)

n + e2πi
d1( n

d1
−1)

n + e2πi n
n

We want to prove that µ(n) = F ∗(n), where f(x) = e2πix, which means

that we need to prove that F ( n
d1

) = 0. In order to do this we will multiply

F ( n
d1

) by a function which is not of value 1 but will still return the same

function. In our case e2πi
d1
n 6= 1, since d1 6= n by the definition of d1. Thus,

e2πi
d1
n F (

n

d1

) = e2πi
d1
n

n
d1∑

k=1

e2πi
d1k
n =

n
d1∑

k=1

e2πi
(k+1)d1

n = A,

and summing over we get

A = e2πi
2d1
n + e2πi

3d1
n + ... + e2πi

d1( n
d1
−2+1)

n + e2πi
d1( n

d1
−1+1)

n + e2πi
d1( n

d1
+1)

n
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If we look carefully at the terms of both products we will see that if

we rearrange the terms and let the last term of the second product become

the first the two products will be completely the same. Then, e2πi
d1
n F ( n

d1
) =

F ( n
d1

), which means that e2πi
d1
n F ( n

d1
)−F ( n

d1
) = 0 and we know that e2πi

d1
n 6= 1

by the definition of d1 and since the only solutions to F ( n
d1

)(e2πi
d1
n − 1) = 0

are e2πi
d1
n = 1 or F ( n

d1
) = 0, therefore F ( n

d1
) = 0.

So then the right hand side of the identity we want to prove becomes

F ∗(n) = µ(n) +
∑

d2|n 0.F ( n
d2

) +
∑

d1|n µ(d1).0 = µ(n) and by the identity we

have from part A of Proposition 3 we have thus proven

µ(n) =
n∑

k=1
(k,n)=1

e2πik/n.

3.4 Proposition 4

For n ≥ 1 we have

σ1(n) =
∑

d|n
φ(d)σ0(

n

d
).

Proof: Let n = pa1
1 ∗ pa2

2 ∗ ... ∗ pam
m . By the definition of the divisor

function σα and the Euler totient we know that they are both multiplicative

which means that, for example, σ1(n) = σ1(p
a1
1 ∗ pa2

2 ∗ ... ∗ pam
m ) = σ1(p

a1
1 ) ∗

σ1(p
a2
2 ) ∗ ... ∗ σ1(p

am
m ). From the properties of the divisor function it follows

that σα(pa) = pα(a+1)−1
pα−1

when α 6= 0 and σα(pa) = a+1 when α = 0. Therefore

in our case when α = 1 we solve the equation:

σ1(n) = σ1(p
a1
1 ∗ pa2

2 ∗ ... ∗ pam
m ) = σ1(p

a1
1 ) ∗ σ1(p

a2
2 ) ∗ ......... ∗ σ1(p

am
m ) =
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pa1+1
1 − 1

p1 − 1
∗ pa2+1

2 − 1

p2 − 1
∗ ......... ∗ pam+1

m − 1

pm − 1

We will call this side the left hand side, LHS. Let us look at the right

hand side, RHS, of the equation. We see that our variable in this case is

d, which represents the divisors of n. These divisors will have the form

d = pi1
1 ∗ pi2

2 ∗ .... ∗ pim
m where 0 ≤ i1, i2, ....., ir ≥ a1, a2, ....., ar, respectively.

This form of each of the divisors will allow us to represent them all since this

way we will be able to count for the divisors with different primes and the

different powers these primes could have. Then when we substitute for d the

RHS will become

RHS =
∑

d|n
φ(d)σ0(

n

d
) =

a1∑
i1=0

a2∑
i2=0

......

am∑
im=0

φ(pi1
1 ∗pi2

2 ∗...∗pim
m )σo(

n

pi1
1 ∗ pi2

2 ∗ ... ∗ pim
m

)

for which be the definition of n and since the Euler totient is a multi-

plicative function we get the following result:

RHS =

a1∑
i1=0

......

am∑
im=0

φ(pi1
1 ) ∗ .... ∗ φ(pi2

2 )σ0(
pa1

1 ∗ pa2
2 ∗ ... ∗ pam

m

pi1
1 ∗ pi2

2 ∗ ... ∗ pim
m

)

and when we divide in the argument of the divisor function we generate

RHS =

a1∑
i1=0

......

am∑
im=0

φ(pi1
1 ) ∗ .... ∗ φ(pi2

2 )σ0(p
a1−i1
1 ∗ pa2−i2

2 ∗ ... ∗ pam−im
m )

and again because the divisor function is also multiplicative we can write

the equation and rearrange its terms so that

RHS =

a1∑
i1=0

......

am∑
im=0

φ(pi1
1 )σ0(p

a1−i1
1 )∗φ(pi2

1 )σ0(p
a2−i2
2 )∗ ...∗φ(pim

m )σ0(p
am−im
m )
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We have m-sums and for each one of them only two terms of the equations

are variable - the ones whose variables are the respective ij, where j = 1, ..., r.

We can then rearrange the terms so that each couple of terms will be summed

over in the appropriate sum. We are allowed to do that since for each sum

only terms change and the rest m− 1 couples of terms are constants, which

we can get in front of the sum. Applying this rule m times we rearrange the

RHS:

RHS =

a1∑
i1=0

φ(pi1
1 )σ0(p

a1−i1
1 )

a2∑
i2=0

φ(pi2
2 )σ0(p

a2−i2
2 )...

am∑
im=0

φ(pim
m )σ0(p

am−im
m )

The functions for each sum are the same, the only difference being that

they depend on a different prime number. The variables for these functions

assume the same values, so it will be enough to solve for one of these sums

and then this result will apply to all the other sums taking into account their

respective primes. Let us take the first sum and solve for it:

We will denote the first sum with A, therefore

a1∑
i1=0

φ(pi1
1 )σ0(p

a1−i1
1 ) = A

and then

A = φ(1)σ0(p
a1
1 )+φ(p1)σ0(p

a1−1
1 )+....+φ(pa1−2

1 )σ0(p
2
1)+φ(pa1−1

1 )σ0(p1)+φ(pa1
1 )σ0(1)

when we apply the formulas we know for the functions in question we get

A = a1+1+(p1−1)(a1−1+1)+p1(p1−1)(a1−2+1)+p2
1(p1−1)(a1−3+1)+
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+p3
1(p1−1)(a1−4+1)+ ...+pa1−1−1

1 (p1−1)(a1− (a1−1)+1)+pa1−1
1 (p1−1)

we can then factor out their common factor so

A = a1 + 1 + (p1 − 1)(a1 + p1(a1 − 1) + p2
1(a1 − 2) + ......... + 2pa1−2

1 + pa1−1
1 )

and when we open the brackets inside

A = a1+1+(p1−1)(a1+p1a1−p1+p2
1a1−2p2

1+p3
1a1−3p3

1+...+2pa1−2
1 +pa1−1

1 )

we now multiply the two terms in the brackets and so

A = a1 +1+(a1p1−a1 +a1p
2
1−a1p1−p2

1 +p1 +a1p
3
1−a1p

2
1−2p3

1 +2p2
1 +a1p

4
1−

−a1p
3
1 − 3p4

1 + 3p3
1 + ... + 3pa1−2

1 − 3pa1−3
1 + 2pa1−1

1 − 2pa1−2
1 + pa1

1 − p
a−1
1 )

we can see that some terms repeat but with opposite signs, so these terms

will give 0. Some other terms can be combined together so when we apply

all operations possible we will end up with

A = a1 + 1 + (−a1 + p1 + p2
1 + p3

1 + p4
1 + ... + pa1−3

1 + pa1−2
1 + pa1−1

1 + pa1
1 )

so when we add the first term the sum comes out to be

A = 1 + p1 + p2
1 + p3

1 + p4
1 + ... + pa1−3

1 + pa1−2
1 + pa1−1

1 + pa1
1

and we can see that this is a geometric progression so when we use the formula

for a geometric progression the first sum equals

A =

a1∑
i1=0

φ(pi1
1 )σ0(p

a1−i1
1 ) =

1− pa1+1
1

1− p1

=
pa1+1

1 − 1

p1 − 1

Since this result will apply to all m sums we solve the right hand side to be:

RHS =

a1∑
i1=0

φ(pi1
1 )σ0(p

a1−i1
1 )

a2∑
i2=0

φ(pi2
2 )σ0(p

a2−i2
2 )...

am∑
im=0

φ(pim
m )σ0(p

am−im
m )
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so when we substitute the result we got the product becomes

RHS =
pa1+1

1 − 1

p1 − 1
∗ pa2+1

2 − 1

p2 − 1
∗ ... ∗ p

ar−1+1
r−1 − 1

pr−1 − 1
∗ par+1

r − 1

pr − 1

which means that

LHS = RHS

so we proved the equality

σ1(n) =
∑

d|n
φ(d)σ0(

n

d
).
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