Math 211, Spring 2017 — Quiz 6

March 31

NT	
Name:	

Instructions. Please do all of the following problems. No calculators or other materials are allowed.

Problem 1. Consider the basis $\mathcal{B} = (\vec{v}_1, \vec{v}_2)$ where

$$\vec{v}_1 = \left[\begin{array}{c} 2 \\ 3 \end{array} \right], \quad \vec{v}_2 = \left[\begin{array}{c} -1 \\ 1 \end{array} \right]$$

1. If $\vec{x} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$ then find the \mathcal{B} -coordinate vector $[\vec{x}]_{\mathcal{B}}$.

Notice
$$\vec{x} = \vec{v}_1 + 2\vec{v}_2$$

So
$$\begin{bmatrix} \vec{x} \end{bmatrix}_{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2. If $[\vec{y}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ then find the vector \vec{y} in standard coordinates.

$$\vec{y} = 3\vec{v}_1 + 3\vec{v}_2$$

$$= 3[3] + 3[1]$$

$$= [3]$$

Problem 2. Consider the plane V in \mathbb{R}^3 given by the equation

$$2x_1 + 3x_2 - x_1 = 0$$

and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation which reflects vectors across V.

1. Find a vector \vec{v}_1 perpendicular to the plane.

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

2. Find two vectors \vec{v}_2 , \vec{v}_3 which are on V but not parallel to each other.

Let
$$x_1 = 1$$
, $x_2 = 0$. Then $x_3 = 2$

$$x_1 = 0$$
, $x_2 = 1$. Then $x_3 = 3$

$$v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
 and $v_3 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ are in V .

3. Let $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$. Find the \mathcal{B} -matrix B of T.

4. Express the standard matrix A of T as a product of 3 matrices.

$$S = SBS^{-1}$$

$$S = SBS^{-1}$$

$$S = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$$

$$S = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$$