Linear algebra, Spring 2017 — Rank of a matrix

Class on February 2

Suppose we have a linear system with n equations and m unknowns. We've learned that this system can be expressed as the equation $A\vec{x} = \vec{b}$ or as an augmented matrix

$$\left[\begin{array}{cc}A & \vdots & \vec{b}\end{array}\right]$$

where A is an $n \times m$ matrix called the coefficient matrix and $\vec{b} \in \mathbb{R}^n$.

Exercise 1. Suppose we are told that the linear system is inconsistent. What important feature should $\operatorname{rref}(A)$ have? Can you give an example of what $\operatorname{rref}(A)$ might look like if A is a 5×3 matrix? How many leading 1's can your example have? What can you say about $\operatorname{rank}(A)$?

Solution 1. The important feature is that $\operatorname{rref}(A)$ should have a row of zeroes. This provides the chance for there to be a contradicting equation like 0 = 1. Any RREF 3×5 matrix with a row of zeroes would work as an example; it could have as many as 3 leading 1's.

Key statement about rank: If $A\vec{x} = \vec{b}$ is inconsistent, then rank(A) < n. **Proof:** Since the system is inconsistent, rref(A) has a row of zeroes. Therefore, not every row has a leading 1. Since A has n rows, this means rank(A) < n.

Exercise 2. Suppose we are told that the linear system has infinitely many solutions. What should $\operatorname{rref}(A)$ look like this time? Can you give an example of what $\operatorname{rref}(A)$ might look like if A is a 5×3 matrix? How many leading 1's can your example have? What can you say about $\operatorname{rank}(A)$?

Solution 2. The important feature is that the system should have free variables. Any RREF 3×5 matrix with strictly fewer than 3 leading 1's would work as an example.

Key statement about rank: If $A\vec{x} = \vec{b}$ has infinitely many solutions, then rank(A) < m. **Proof:** Since the system has free variables, not all of the variables can be leading variables. Since m is the total number of variables, rank(A) < m. **Exercise 3.** Suppose we are told that the linear system has exactly one solution. What should $\operatorname{rref}(A)$ look like this time?

- 1. Can you give an example of what $\operatorname{rref}(A)$ might look like if A is a 5×3 matrix? How many leading 1's can your example have? What can you say about $\operatorname{rank}(A)$?
- 2. Could A be a 3×5 matrix? Why or why not?

Solution 3. If the system has exactly one solution, we cannot have free variables, which means every column of $\operatorname{rref}(A)$ must have a leading 1.

1. Our example this time must look like

[1	0	0	
0	1	0	
0	0	1	
0	0	0	
0	0	0	

Key statement about rank: If $A\vec{x} = \vec{b}$ has exactly one solution, then rank(A) = m. **Proof:** All *m* variables must be leading variables.

2. A could not be a 3×5 matrix and correspond to a system with exactly one solution. If it did, then rank(A) = 5 our previous key statement about rank. But this means that there are 5 leading 1's, which is impossible since the number of leading 1's cannot be more than 3 (the number of rows of A).

Summary. The following theorem summarizes the key statements that came about from the previous exercises.

Theorem. Let A be an $n \times m$ matrix and consider a linear system whose coefficient matrix is A. The following statements hold:

- 1. If the system is inconsistent, then rank(A) < n.
- 2. If the system has infinitely many solutions, then rank(A) < m.
- 3. If the system has exactly one solution, then $\operatorname{rank}(A) = m$.
- 4. If a system has exactly one solution, then there must be at least as many equations of variables (i.e. $n \ge m$).