Unmixed Edge Ideals

Greg Burnham
Advisor: Jessica Sidman

Mt. Holyoke College REU
NSF-REU DMS-0849637

August 6, 2009
Definition

A graph is a finite set V (vertices) together with a set E (edges) of unordered pairs of elements of V.
Definition

A graph is a finite set V (vertices) together with a set E (edges) of unordered pairs of elements of V.

That is, graphs are things that look like this:
Graphs

Definition

A graph is a finite set V (vertices) together with a set E (edges) of unordered pairs of elements of V.

That is, graphs are things that look like this:

Example
Definition

If G is a graph on n vertices then the *complement* of G, denoted G^c, is the graph on n vertices where two vertices are connected in G^c if and only if they are *not* connected in G.
Definition

If G is a graph on n vertices then the complement of G, denoted G^c, is the graph on n vertices where two vertices are connected in G^c if and only if they are not connected in G.

Example

A graph and its complement:
Definition

The graph on n vertices with every vertex connected to every other vertex is referred to as the *complete graph* on n vertices and is denoted K_n.
Definition

The graph on \(n \) vertices with every vertex connected to every other vertex is referred to as the *complete graph* on \(n \) vertices and is denoted \(K_n \).

Example

\(K_3 \) and \(K_5 \):

![Diagram of \(K_3 \) and \(K_5 \)]
Definition
Let R be a commutative ring. Then a subset $I \subseteq R$ is an ideal of R if it satisfies the following two properties:

- I is an abelian group under addition.
- If $r \in R$ and $s \in I$ then rs is in I.

Example
If $R = \mathbb{Z}$ then the multiples of 6 form an ideal.
Definition

We say an ideal I of R is *generated* by elements s_1, \ldots, s_m if every element $s \in I$ can be expressed as

$$s = r_1 s_1 + \ldots + r_m s_m$$

for some r_1, \ldots, r_m in R. If I is generated by s_1, \ldots, s_m then we write $I = \langle s_1, \ldots, s_m \rangle$.

Ideals (Cont’d)

Definition
We say an ideal \(I \) of \(R \) is *generated* by elements \(s_1, \ldots, s_m \) if every element \(s \in I \) can be expressed as

\[
s = r_1s_1 + \ldots + r_m s_m
\]

for some \(r_1, \ldots, r_m \) in \(R \). If \(I \) is generated by \(s_1, \ldots, s_m \) then we write \(I = \langle s_1, \ldots, s_m \rangle \).

Example
If \(R = \mathbb{R}[x, y] \) then

\[
I = \{ f(x, y)x^2 + g(x, y)(x + y) \mid f(x, y), g(x, y) \in \mathbb{R}[x, y] \}
\]
is an ideal. In this case \(I = \langle x^2, x + y \rangle \).
Definition

Let G be a graph on vertices labeled x_1 through x_n. The edge ideal of G, denoted $I(G)$, is the ideal of $\mathbb{R}[x_1, \ldots, x_n]$ whose generators are given as follows: x_ix_j is a generator of $I(G)$ if and only if x_i is connected to x_j in G.

Example

The graph G below:

\[x_1\quad x_2\quad x_3\quad x_4\quad x_5\]

has edge ideal:

\[I(G) = \langle x_1x_2, x_1x_3, x_2x_3, x_3x_4, x_4x_5 \rangle\]
Definition

Let G be a graph on vertices labeled x_1 through x_n. The *edge ideal* of G, denoted $I(G)$, is the ideal of $\mathbb{R}[x_1, \ldots, x_n]$ whose generators are given as follows: x_ix_j is a generator of $I(G)$ if and only if x_i is connected to x_j in G.

Example

The graph G below:

```
 x1 -- x2 -- x3 -- x4
     /   \
    /     \
 x5     x4
```

has edge ideal:

$$I(G) = \langle x_1x_2, x_1x_3, x_2x_3, x_3x_4, x_4x_5 \rangle$$
Definition

Given an edge ideal $I(G)$ in $\mathbb{R}[x_1, \ldots, x_n]$ we define the edge variety of $I(G)$, denoted $V(G)$, to be the common solution set in \mathbb{R}^n of the generators of $I(G)$.

Example

Suppose G is the graph displayed below:

Then $I(G) = \langle xy, yz \rangle \subseteq \mathbb{R}[x, y, z]$ and $V(G)$ is the union of the xz-plane and the y-axis.
Definition

Given an edge ideal $I(G)$ in $\mathbb{R}[x_1, \ldots, x_n]$ we define the *edge variety* of $I(G)$, denoted $V(G)$, to be the common solution set in \mathbb{R}^n of the generators of $I(G)$.

Example

Suppose G is the graph displayed below:

```
     y
    /|
   / | \
  /  |  \
 x---z
```

Then $I(G) = \langle xy, yz \rangle \subseteq \mathbb{R}[x, y, z]$ and $V(G)$ is the union of the xz-plane and the y-axis.
Fact

If G is a graph on n vertices then its edge variety $V(G)$ is the finite union of coordinate subspaces of \mathbb{R}^n.
Fact

If G is a graph on n vertices then its edge variety $V(G)$ is the finite union of coordinate subspaces of \mathbb{R}^n.

It follows from this fact that:
Fact

If G is a graph on n vertices then its edge variety $V(G)$ is the finite union of coordinate subspaces of \mathbb{R}^n.

It follows from this fact that:

Fact

If $I(G)$ is an edge ideal then $I(G)$ can be uniquely expressed as the intersection of ideals generated by variables.
Fact

If G is a graph on n vertices then its edge variety $V(G)$ is the finite union of coordinate subspaces of \mathbb{R}^n.

It follows from this fact that:

Fact

If $I(G)$ is an edge ideal then $I(G)$ can be uniquely expressed as the intersection of ideals generated by variables.

Definition

We refer to this intersection as the *primary decomposition* of $I(G)$, and we refer to the individual ideals in the intersection as the *associated prime ideals* of $I(G)$.
Example

Suppose G is the graph displayed below:

```
    y
   /|
  x  z
```

Then

$$I(G) = \langle xy, yz \rangle$$

and the primary decomposition of $I(G)$ is

$$\langle x, z \rangle \cap \langle y \rangle.$$
Example

Suppose \(G \) is the graph displayed below:

\[
\begin{align*}
\text{Then } & \quad I(G) = \langle x_1x_2, x_1x_3, x_2x_3, x_3x_4, x_4x_5 \rangle \\
\text{and the primary decomposition of } I(G) \text{ is } & \quad \langle x_1, x_2, x_4 \rangle \cap \langle x_1, x_3, x_4 \rangle \cap \langle x_2, x_3, x_5 \rangle \cap \langle x_2, x_3, x_4 \rangle \cap \langle x_2, x_3, x_5 \rangle.
\end{align*}
\]
We say an edge ideal $I(G)$ in $\mathbb{R}[x_1, \ldots, x_n]$ is *unmixed* if all of its associated prime ideals have the same number of variables. We say $I(G)$ is *unmixed of dimension r* if each of its associated prime ideals is generated by $n - r$.
Unmixed Edge Ideals

Definition

We say an edge ideal $I(G)$ in $\mathbb{R}[x_1, \ldots, x_n]$ is *unmixed* if all of its associated prime ideals have the same number of variables. We say $I(G)$ is *unmixed of dimension r* if each of its associated prime ideals is generated by $n - r$.

Example

We saw in the previous two slides that the graph on the left is not unmixed, and that the graph on the right is unmixed of dimension 2.
Question

Given a graph G, how do you tell if $I(G)$ is unmixed of dimension r?
The Question

Question
Given a graph G, how do you tell if $I(G)$ is unmixed of dimension r?

Remark
If G is a graph then the edge ideal $I(G)$ being unmixed of dimension r is equivalent to each of the (maximal) coordinate subspaces of $V(G)$ having dimension r.
The Question

Question
Given a graph G, how do you tell if $I(G)$ is unmixed of dimension r?

Remark
If G is a graph then the edge ideal $I(G)$ being unmixed of dimension r is equivalent to each of the (maximal) coordinate subspaces of $V(G)$ having dimension r.

Strategy
Given an arbitrary edge ideal $I(G)$, try to state in terms of the generators of $I(G)$ just what $V(G)$ looks like. In particular, try to express what the maximal coordinate subspaces of $V(G)$ look like.
An Answer for Dimension 2

Theorem

Let G be a graph. Then, $I(G)$ is unmixed of dimension 2 if and only if the following two conditions hold:

- G^c contains no triangles.
- G^c contains no isolated vertices.

Example

The complement of G contains no triangle and no isolated vertices. We saw earlier that G is unmixed of dimension 2, as predicted.
An Answer for Dimension 2

Theorem

Let G be a graph. Then, $I(G)$ is unmixed of dimension 2 if and only if the following two conditions hold:

- G^c contains no triangles.
- G^c contains no isolated vertices.

Example

The complement of G contains no triangle and no isolated vertices. We saw earlier that G is unmixed of dimension 2, as predicted.
Remark

We could rephrase the conditions of the previous theorem as follows:

- G^c contains no copies of K_3.
- Whenever G^c contains a copy of K_1, it lies inside some copy of K_2.

(Here i is any positive integer less than r.)
Remark

We could rephrase the conditions of the previous theorem as follows:

- G^c contains no copies of K_3.
- Whenever G^c contains a copy of K_1, it lies inside some copy of K_2.

Theorem

Let G be a graph. Then, $I(G)$ is unmixed of dimension r if and only if the following two conditions hold:

- G^c contains no copies of K_{r+1}
- Whenever G^c contains a copy of K_{r-i}, it lies inside some copy of K_r.

(Here i is any positive integer less than r.)
Example

The graph on the left is unmixed of dimension 3. The graph on the right is not unmixed.
Applications

- Describing the Alexander dual of $I(G)$
- Determining when $I(G)$ is Cohen-Macaulay
Acknowledgments

- Jessica Sidman (Mount Holyoke College)
- Ha Huy Tai (Tulane University)
- Adam Van Tuyl (Lakehead University)
- The NSF