Igusa local zeta functions and p-adic analysis

Newton polyhedra and degenerate polynomials

Adrienne Rau
ar2197@barnard.edu

Mount Holyoke College REU
South Hadley, MA 01075
This work was supported by NSF grant #DMS-0353700.
An introduction to p-adic valuation...

Given a number $a \in \mathbb{Q}$, the p-adic absolute value of a, denoted $|a|_p$, is defined as

$$|a|_p = \begin{cases} p^{-\text{ord}_p(a)} & \text{if } a \neq 0 \\ 0 & \text{if } a = 0. \end{cases}$$
Introduction

An introduction to p-adic valuation...

Given a number $a \in \mathbb{Q}$, the p-adic absolute value of a, denoted $|a|_p$, is defined as

$$|a|_p = \begin{cases} p^{-\text{ord}_p(a)} & \text{if } a \neq 0 \\ 0 & \text{if } a = 0. \end{cases}$$

- $\text{ord}_5\left(\frac{1}{25}\right) = -2 \Rightarrow \left|\frac{1}{25}\right|_5 = 5^2 = 25$

- $\text{ord}_3(18) = 2 \Rightarrow |18|_3 = 3^{-2} = \frac{1}{9}$
\(p \)-adic numbers

- The field of all \(p \)-adic numbers, \(\mathbb{Q}_p \), is defined as all equivalence classes of \(p \)-adic Cauchy sequences. A sequence \(\{x_i\} \) is Cauchy if for all \(\epsilon \) there exists \(N \in \mathbb{N} \) such that if \(m, n > N \), then
\[|x_n - x_m| < \epsilon. \]
p-adic numbers

- The field of all p-adic numbers, \mathbb{Q}_p, is defined as all equivalence classes of p-adic Cauchy sequences. A sequence \(\{x_i\} \) is Cauchy if for all ϵ there exists $N \in \mathbb{N}$ such that if $m, n > N$, then $|x_n - x_m| < \epsilon$.

- The ring of p-adic integers, \mathbb{Z}_p, is composed of all p-adic numbers $a \in \mathbb{Q}_p$ with $|a|_p \leq 1$.

Every p-adic integer a has the form

$$a = a_0 + pa_1 + p^2a_2 + \ldots + p^ma_m + \ldots$$

for some $m \in \mathbb{Z}$.
p-adic numbers

The *units* in \mathbb{Z}_p are all p-adic integers a with

$$|a|_p = 1.$$

i.e. p-adic integers of the form

$$a = a_0 + pa_1 + \ldots + p^m a_m + \ldots$$

with $a_0 \neq 0$.
Topology

The topology of \mathbb{Z}_p, for $p = 5$:

Note that every point in an open ball is a center of that ball.
Igusa local zeta function

The Igusa local zeta function associated to a polynomial $f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ is defined as

$$Z(s) = \int_{\mathbb{Z}_p^n} |f(x_1, \ldots, x_n)|_p^s \, dx_1 \ldots dx_n,$$

$s \in \mathbb{C}$, $Re(s) > 0$.

We use the convention $t = p^{-s}$.
Stationary Phase Formula

\[Z(s) = (p^n - |N_0|)p^{-n} + (|N_0| - |S|)p^{-n}t \left(\frac{1 - p^{-1}}{1 - p^{-1}t} \right) \]

\[+ \sum_{\alpha \in S} \int_{\alpha + p\mathbb{Z}_p^n} |f(x_1, \ldots, x_n)|^s \, dx_1 \ldots dx_n \]

where

\[N_0 = \{(x_1, \ldots, x_n) \in \mathbb{F}_p^n \mid f(x_1, \ldots, x_n) \equiv 0 \pmod{p}\} \]

and

\[S = \{(x_1, \ldots, x_n) \in N_0 \mid \frac{\partial f}{\partial x_i}(x) \equiv 0 \pmod{p}, 1 \leq i \leq n\}. \]
Ex. 1 - \(f(x) = x \)

\[
N_0 = \{x \mid x \equiv 0 \pmod{p}\} \Rightarrow |N_0| = 1
\]

\[
S = \{x \in N_0 \mid \frac{\partial f}{\partial x}(x) \equiv 0 \pmod{p}\} = \emptyset \Rightarrow |S| = 0,
\]

so using SPF...

\[
Z(s) = (p - 1)p^{-1} + (1 - 0)p^{-1}t \left(\frac{1 - p^{-1}}{1 - p^{-1}t} \right)
\]

\[
= \frac{1 - p^{-1}}{1 - p^{-1}t}
\]
Ex. 2 - \(f(x, y, z) = (x - y)^2 + z \)

\[N_0 = \{(x, y, -(x - y)^2)\} \Rightarrow |N_0| = p^2 \]

\[S = \emptyset \Rightarrow |S| = 0 \]

Zeta function:

\[Z(s) = (p^3 - p^2)p^{-3} + (p^2 - 0)p^{-3}t \left(\frac{1 - p^{-1}}{1 - p^{-1}t} \right) \]

\[= \frac{1 - p^{-1}}{1 - p^{-1}t} \]
Support of f

Given a polynomial

$$f(x_1, \ldots, x_n) = \sum_{\omega \in \mathbb{N}^n} a_\omega x_1^{\omega_1} \cdots x_n^{\omega_n},$$

the support of f is defined as

$$supp(f) = \{\omega \in \mathbb{N}^n \mid a_\omega \neq 0\}.$$

Ex)

$$f(x, y) = xy - x^5 + x^2y^3$$

$$supp(f) = \{(1, 1), (5, 0), (2, 3)\}$$
Newton polyhedron

The Newton polyhedron $\Gamma(f)$ of a polynomial $f(x_1, \ldots, x_n)$, $f(0)=0$, is the convex hull in $(\mathbb{R}^+)^n$ of the set

$$\bigcup_{\omega \in \text{supp}(f)} \omega + (\mathbb{R}^+)^n.$$

$$f(x, y) = xy - x^5 + x^2 y^3$$
Faces and associated cones

- A face τ of $\Gamma(f)$ is the intersection of $\Gamma(f)$ with a supporting hyperplane that does not intersect the interior of $\Gamma(f)$. A facet is a face of dimension $n - 1$.
Faces and associated cones

- A face τ of $\Gamma(f)$ is the intersection of $\Gamma(f)$ with a supporting hyperplane that does not intersect the interior of $\Gamma(f)$. A facet is a face of dimension $n - 1$.
- The cone associated to a facet τ is the normal vector to τ. The cone for a face that is not a facet is the span of the cones for all facets containing the face.
Degeneracy

Given a polynomial $f(x_1, \ldots, x_n)$, the polynomial f_{τ} is composed of the terms of f whose support is equal to $\text{supp}(f) \cap \tau$.
Degeneracy

Given a polynomial $f(x_1, \ldots, x_n)$, the polynomial f_τ is composed of the terms of f whose support is equal to $\text{supp}(f) \cap \tau$.

A polynomial $f(x_1, \ldots, x_n)$ is non-degenerate with respect to all faces of its Newton polyhedron if the system

$$ \begin{cases} f_\tau(x_1, \ldots, x_n) \equiv 0 \pmod{p} \\ \frac{\partial f_\tau}{\partial x_i}(x) \equiv 0 \pmod{p} \end{cases} $$

has no non-zero solutions.
\(\sigma(\mathbf{k}) \) and \(m(\mathbf{k}) \)

For an \(n \)-vector \(\mathbf{k} \),

\[
\sigma(\mathbf{k}) := \sum_{i=1}^{n} k_i
\]

and

\[
m(\mathbf{k}) := \inf_{\mathbf{x} \in \Gamma(f)} \{ \mathbf{k} \cdot \mathbf{x} \}.
\]
Non-degenerate polynomials

For a polynomial $f(x_1, \ldots, x_n)$ that is nondegenerate with respect to all faces of its Newton polyhedron, the Igusa local zeta function associated to f is

$$Z(s) = \sum_{\tau \in \Gamma(f)} L_{\tau} S_{\Delta_{\tau}},$$

where

$$L_{\tau} = p^{-n} \left((p - 1)^n - p|N_{\tau}| \left(\frac{p^s - 1}{p^{s+1} - 1} \right) \right),$$

$$N_{\tau} = \{(x_1, \ldots, x_n) \in (\mathbb{F}_p^*)^n \mid f_\tau(x_1, \ldots, x_n) \equiv 0 \pmod{p} \},$$

$$S_{\Delta_{\tau}} = \sum_{k} p^{-\sigma(k) + m(k)s}.$$
Degenerate polynomials

For a polynomial which is degenerate with respect to some faces of its Newton polyhedron, $S_{\Delta \tau}$ doesn’t change, but L_{τ} does.

$$\overline{L}_{\tau} = p^{-n}((p-1)^n - |N_{\tau}|) + (|N_{\tau}| - |S|) p^{-n}t \left(\frac{1 - p^{-1}}{1 - p^{-1}t} \right).$$

Note that for all faces for which f_{τ} is non-degenerate, L_{τ} remains as in the original formula.
Degenerate polynomials 2

\[Z(s) = \sum_{\tau \text{ nondeg.}} L_\tau S_{\Delta \tau} \]

\[+ \sum_{\tau \text{ deg.}} \left(L_\tau S_{\Delta \tau} + \sum_{k} \left(p^{-(\sigma(k)+m(k))s} \sum_{\alpha \in S} \int_{\alpha + p\mathbb{Z}_p^n} |f_\tau + p\tilde{f}|^s \, du_1 \ldots du_n \right) \right) \]

where \(f_\tau + p\tilde{f} = p^{m(k)} f \).
Example

Recall the polynomials from earlier:

1. \(f(x) = x \)
2. \(f(x, y, z) = (x - y)^2 + z \)
Example

Recall the polynomials from earlier:

1. \(f(x) = x \)

2. \(f(x, y, z) = (x - y)^2 + z \)

\[
Z(s) = \frac{1 - p^{-1}}{1 - p^{-1}t}
\]

for both polynomials, but (1) is non-degenerate while (2) is degenerate!
Future research

- Compare polynomials, both non-degenerate and degenerate, which have the same ILZF.
Future research

- Compare polynomials, both non-degenerate and degenerate, which have the same ILZF.
- Find classes of polynomials for which more can be said about the integral over the singular points in the Newton polyhedron method.
Acknowledgements

I would like to say thanks to:

- Dr. Margaret Robinson
- Dr. Jessica Sidman and the Polytope REU group
- My fellow REU students: Rex Cheung, Rosi Dineva, Joanna Miles, Ricardo Portilla, and Matthew Pragel
- Mt. Holyoke College
- The National Science Foundation
- Kathleen Hoornaert and Davy Loots, for their computer program *Polygusa*.