Preschool Children's Entry Attempts

PATRICIA G. RAMSEY
CAROL LASQUADE
Mount Holyoke College

This study is an examination of age differences in preschool children's entry strategies and the factors that contribute to their outcomes. The participants were 54 preschool children in age-stratified (3-year-old, 4-year-old, and 5-year-old) classrooms. Their reciprocal friendship choices, peer contacts, and entry behaviors were recorded throughout the year. Children's entry behaviors varied by age, but across all age groups, outcomes were related most consistently to specific entry strategies. The relationship between the initiators and the target was related to the success of entry attempts, but these effects varied across age groups.

Preschoolers' interactions are usually brief, because young children are easily distracted by new activities and other peers. As a result, young children spend a considerable amount of their social time finding new play partners by initiating contacts or entering ongoing groups (Corsaro, 1985). Children's success with these overtures is critical to their peer interactions in the classroom and their ongoing social development. Not surprisingly, preschool and elementary school children's entry behaviors have been the focus of many previous studies.

Most of these studies have focused on the sociometric status of individual children and the kinds of entry behaviors that characterize children from different sociometric status groups (e.g., Black & Hazen, 1990; Dodge, Pettit, McClaskey, & Brown, 1986; Dodge, Schlundt, Schocken, & Delugach, 1983; Hazen & Black, 1989; Putallaz, 1983; Putallaz & Gottman, 1981; Rubin & Daniels-Bierness, 1983). In general, popular children use entry strategies that are more in tune with the activities and interests of their target(s) and more likely to be accepted. Low-status children, on the other hand, make overtures that are either intrusive or very tentative and are often rejected or ignored.

The relation between sociometric status and entry success is well established in both elementary school children (e.g., Dodge et al., 1983; Putallaz & Wasserman, 1989) and in preschool children (e.g., Black & Hazen, 1990; Hazen & Black, 1989). However, we know less about developmental trends in entry behaviors and the contexts in which children are attempting to make contact with peers (Hartup & Laursen, 1993; Putallaz & Wasserman, 1989). For early childhood practitioners, anticipating developmental shifts in entry behaviors and knowing which strategies and situations are most conducive to successful entries are critical for designing appropriate and effective guidance and interventions. Many previous studies of entry behaviors have been done in laboratory settings in which the sociometric status, numbers, and gender of the subjects have been carefully controlled. Thus, we also need to know more about how children make contact with peers in naturalistic group settings where the context is more spontaneous and fluid.

Given the rapid development of children's social skills during the preschool period, the first question that this study addresses is whether or not children's entry strategies and rate of success change from early to late preschool. Pre-school children are becoming more adept at seeing others' points of view and coordinating perspectives (Selman, 1981; Selman & Schultz, 1990). Reflecting these cognitive changes, their interactive skills increase rapidly (Hart, DeWolf, Wozniak, & Buns, 1992). They learn how to resolve conflicts more easily (Shantz, 1987), and their play becomes more complex and participatory (Howes, 1987). Thus, we would expect that. with age, their entry strategies would become more attuned to others' perspectives and therefore more successful. However, there are very few studies that compare entry strategies and outcomes across age groups. One early study (Mallay, 1934) with a sample of 21 preschoolers, aged 2 to 4 years, found no evidence of age differences in children's entry attempts and success rates. The sample size was small, however, and all the subjects appear to have been in the same classroom so that the older and younger children may have imitated each other, thereby muting any age effects. In his ethnographic study of preschool children, Corsaro (1979) found a few age differences between entry strategies of younger and older preschoolers that reflect advances in perspective taking. Younger children entered by physically disrupting an activity more often than their older peers, who were more likely to verbally negotiate an entry. Children's overtures to peers may also reflect changing play interests. According to a review by Bergen (1987), the frequency of exploratory and sensorimotor play declines during the preschool and kindergarten years, and games with rules, constructive play, and symbolic games increase. To engage in these more advanced types of play, such as games with rules, children may use more information-focused entries than they do to join a more exploratory or sensorimotor play, such as chasing each other on the playground. Putallaz and Wasserman (1989) studied elementary school children and found that first graders attempted to initiate contact more often than fifth graders and spent more time alone, suggesting that either the younger children's entries...
were less successful and/or that they had a harder time sustaining interactions. However, the first, third, and fifth graders used similar entry strategies. Given these mixed findings about developmental change, one purpose of this study was to see whether or not entry strategies, responses, and outcomes showed age-related shifts during the preschool and kindergarten years. First, we expected that the number of entries would decrease with age as found by Putallaz and Wasserman (1989) in their elementary school population. Second, we predicted that older children's entry strategies would be more sociable and less disruptive, reflecting a greater awareness of how their actions affect their Peers.

The second purpose of this study was to explore how entry strategies and situational factors affect responses and outcomes. A ? found in the previous studies on sociometric status and entries, we predicted that friendly overtures would elicit more positive responses and evolve into social interactions, passive approaches would be more often ignored and end in parallel play or no social interaction, and disruptive and demanding entries would be rejected. However, other factors may also affect the outcome of the bid. First, the relationship between the initiator and the target(s) may influence the reaction to an entry attempt. A number of studies have shown that play with close friends is more elaborate (Howes & Unger, 1989) and includes more positive behaviors (Masters & Furman, 1981). Jones (1985) observed that kindergarten and early elementary school children were more responsive to the appeals of friends than to those of nonfriends. Children who are friends probably have developed more ease with each other, so that entries between children who are friends and/or frequent companions would be more successful, as found by Corsaro (1985). Thus, entry attempts between children who are frequent companions or identify each other as friends may elicit more positive responses and evolve into social interactions more often than those between children who are less familiar or friendly with each other.

A second situational factor is whether the target of the entry attempt is a group or an individual. If a child approaches two or more children who are already playing together, the potential hosts may repel what they perceive as an invasion of their shared interactive space (Corsaro, 1985; Hartup & Laursen, 1993). Putallaz and Wasserman (1989) found in their elementary school sample that single children were more likely to accept an entering child than children in groups were. Thus, when children attempt to enter groups, they may have a lower success rate than they do when they initiate contact with an individual child.

Third, the similarity or difference in the gender of the initiator and target may also have an effect on the outcome of the bid. Given the strong same-gender preferences that prevail in most preschools (e.g., Ladd & Price, 1993; Maccoby, 1986; Urberg & Kaplan, 1989), peers are likely to be receptive to the approach of a same-gender child. Phinney (1979) found that same-gender pairs made more frequent and more successful overtures. In a follow-up study (Phinney & Rothe, 1982) in which same- and cross-gender pairs were more systematically compared, children made more same-gender initiations, but the overall rate of success of the entries did not vary.

Age and situational factors may also interact in some cases. Children's preference for same-gender peers tends to increase during preschool (Diamond, Furga, & Blass, 1993; Maccoby, 1990; Ramsey, 1995). so that older children may reject cross-gender initiations more often than their younger peers. Children also develop clearer peer preferences and begin to see their peers in a more long-term and cumulative way (Selman, 1981; Selman & Schultz, 1990). As a result, children become more differentiating about their peers (O'neill & Coppotelli, 1982). and their friendships become more mutual (Shantz, Shantz, & Templin, 1985). Older children's responses to peers' entry bids may be more influenced by their previous experiences with particular peers and less affected by the actual behaviors of the initiator. Phinney (1979) found that for preschoolers, specific strategies were significantly related to the outcomes of the entry attempt. Putallaz and Wasserman (1989) observed that in the elementary school. popular children were more likely to be accepted than their unpopular peers, even when the two groups used similar entry strategies. These findings suggest that as they get older, children may respond more to the entering child as opposed to the entry strategy itself.

METHOD

Participants

The 54 participants were children in a 3-year-old classroom (6 boys and 6 girls). two 4-year-old classrooms (7 boys and 7 girls in each class), and a kindergarten (7 boys and 7 girls) at a laboratory school. With two exceptions, all the children were White, and all came from middle-class and English-speaking families. The classrooms were all in the same laboratory school so that the physical settings, child to teacher ratios, available equipment, and teaching philosophies were similar in all of the classrooms.

Relationships Among Children

Reciprocal Friendships. Children's friendship patterns were measured in October and April. In individual interviews, the examiner showed each classmate's picture to the subject, who indicated whether he or she played with that classmate a lot or a little. After all of the photographs were sorted into these two categories, the children were asked to select their best friends from the "a lot" pile. Reciprocal friendships were identified as pairs of children who gave each other best friend ratings.

Frequency of Contact. Throughout the year, each group was observed for 2 hr per week during free play. The observers, who were sitting in an observation
TABLE 1

<table>
<thead>
<tr>
<th>Entry Behavior</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Entry Strategy</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>31</td>
</tr>
<tr>
<td>SYNCH</td>
<td>23</td>
</tr>
<tr>
<td>SOC</td>
<td>20</td>
</tr>
<tr>
<td>INFO</td>
<td>9</td>
</tr>
<tr>
<td>TKOVER</td>
<td>16</td>
</tr>
<tr>
<td>DISRUPT</td>
<td>3</td>
</tr>
<tr>
<td>Entry Response</td>
<td></td>
</tr>
<tr>
<td>REJECT</td>
<td>7</td>
</tr>
<tr>
<td>NORESP</td>
<td>28</td>
</tr>
<tr>
<td>ACK</td>
<td>31</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>26</td>
</tr>
<tr>
<td>Entry outcome</td>
<td></td>
</tr>
<tr>
<td>NEGINT</td>
<td>2</td>
</tr>
<tr>
<td>NOSOC</td>
<td>26</td>
</tr>
<tr>
<td>PAR</td>
<td>42</td>
</tr>
<tr>
<td>POSINT</td>
<td>26</td>
</tr>
</tbody>
</table>

Note. * indicates which age group in a particular row are significantly different from each other. When there is only one * in a row, that group is significantly different from the other two.

Time

Entries most frequently evolved into parallel play and next most often into no social interaction or positive interactions.

Age and Gender Effects on Entry Behaviors

A number of age effects were evident both in numbers of entry bids and the strategies used. The mean numbers of entries per 5-min observation were significantly higher in the 3-year-old group ($M = 5.25$) than in the 4-year-old group ($M = 1.9$) or 5-year-old group ($M = 1.7$). $F(2, 45.5) = 4.50$. $p < .05$. The MANOVA showed age effects on the overall distribution of strategies used. $F(12, 86) = 1.89$. $p < .05$. As can be seen in Table 1, the kindergartners used wait and hover less and informational questions or statements more than the 3- and 4-year-olds did. The MANOVA also revealed an age effect on responses to entry bids. $F(8, 90) = 2.37$. $p < .05$. The univariate analyses showed that the kindergartners were more likely to accept a bid and less likely to acknowledge it than the 3- or 4-year-olds (see Table 1). The analysis of the outcomes of entry bids showed a strong age effect on the overall distribution. $F(10, 88) = 4.03$. $p < .001$. As seen in Table 1, the bids in the oldest group evolved into parallel play less often than they did in the 3- or 4-year-olds. The entry attempts in the youngest group were more likely to turn into negative interactions than those of the 4- or 5-year-olds.

No gender effects and no significant age by gender interactive effects emerged.

Strategy Effects on Entry Responses and Outcomes

To test the effects of strategies on entry responses and outcomes, the strategies were collapsed from six to four categories: (a) WAIT, (b) SYNCH, (c) FRIENDLY (combined sociable and informational strategies), and (d) CONTROL (combined efforts to control and disrupt). Target responses were collapsed from four to three categories and were then converted to conditional probabilities by determining how frequently a particular strategy was rejected (REJECT), received no response (NORESP) or was positively received (POSRESP; combined scores for accept and acknowledge). Outcomes (NOSOC, NEGINT, PAR, POSINT) were also converted to conditional probabilities using the same method. These calculations were done for each child. The main effects of strategy choice and its interaction with age were then assessed by 4×3 univariate repeated-measures MANOVAs in which the responses and outcomes were the dependent variables.

The multivariate test revealed that overall strategies had a strong effect on responses. $F(9, 998) = 15.55$. $p < .001$. The univariate analyses revealed that each response as affected by strategy (REJECT, $F(3, 412) = 15.83$, $p < .001$; NORESP, $F(3, 412) = 26.90$, $p < .001$; POSRESP, $F(3, 412) = 11.77$, $p < .001$). The multivariate test also revealed a strong effect of strategy on outcomes. $F(12, 1082) = 7.22$. $p < .001$. The univariate analyses showed that strategy affected each outcome (NOSOC, $F(3, 412) = 7.67$, $p < .001$; NEGINT, $F(3, 412) = 3.41$, $p < .05$; PAR, $F(3, 412) = 13.86$, $p < .001$; POSINT, $F(3, 412) = 8.63$, $p < .001$). As can be seen in Figures 1 and 2, the more passive entry approaches (WAIT and SYNCH) most often received no response, but evolved into somewhat different outcomes. Wait and hover bids more often resulted in no social interaction, whereas synchronous behaviors evolved more frequently into parallel play. Friendly entries most often received positive responses and ended up in positive social interactions. Controlling entries had a variety of responses and outcomes, but were more likely to be rejected and in conflicts than the other strategies were. Age interacted with strategy in rejection responses, $F(6, 412) = 2.88$, $p < .01$. The 3-year-olds rejected passive entries (5%) more than the 4-year-olds (2%) or 5-year-olds (1%) did and rejected controlling entries (30%) more than the 4-year-olds (16%) and 5-year-olds (7%) did.

Situation Effects on Entry Responses and Outcomes

To examine the effects of specific circumstances on entry events, we used chi-square analyses with individual entry events as the unit of analysis. Although
brought, scanned the classroom every 5 min and recorded the position of all the children on a map of the classroom and indicated which peer(s) (if any) each child was actively engaged with at the time or the observation. Peer contacts were analyzed for each participant by assessing the frequency or interactions between possible pairs of classmates during 2-month segments. Using the criteria employed by Hinde, Titmus, Easton, and Tamplin (1985), a pair were considered frequent associates if they interacted in 30% or more of the observations during that particular 2-month period.

To assess reliability of the observations, 25% or them were recorded by two observers. The number of agreements were divided by the sum of agreements and disagreements. In recording the location or each child, the observers agreed 92% of the time. The records of whether or not children were interacting were in agreement 86% of the time.

Videotaped Entries

Each child was videotaped for 5 min during free play, once every 2 weeks, throughout the school year. These time samples were analyzed for entry attempts, defined as any verbal or nonverbal attempt to engage a child or group of children, or pain access to an activity or area where other children were present. Children who made the first “move” was the initiator: the recipient(s) were the target(s). Teacher-orchestrated entries (e.g., teacher suggests to a group that they let another child play or the teacher “coaches” a child through an entry attempt) were not included in this analysis because the focus was on how children initiated contacts without adult assistance.

When an entry attempt occurred, it was coded for specific strategies and outcomes. The codes for strategies (based on Dodge et al. 1986) included wait and hover (WAIT), synchronous behavior (SYNCH), sociable comments and actions (SOC), informational statements or questions (INFO), efforts to control the attention and/or actions of the target(s) (TKOVER; e.g., orders or demands, attention-getting moves, and taking materials), and verbal or physical disruption of the ongoing activity of the target children (DISRUPT; e.g., knocking over a block structure, taunting children). Possible responses on the part of the target included reject, no response (NORESP), acknowledge (ACK: e.g., smile fleetingly at the newcomer, but then look away), and accept. Outcomes were coded for the level and affect of the social engagement that occurred 20 seconds after the entry attempt (based on Dodge et al. 1983): positive social interaction (POSIINT), parallel play (PAR), negative social interaction (NEGINT; e.g., fights, arguments), or no social interaction (NOSOC; one or both children leave the area). Coders were trained until they reached agreement levels of 85% in all of the codes. Percentages or specific entry behaviors were derived for each child by dividing the frequency of each behavior by the total number or entries for that participant.

To assess interrater reliability, 50% of the taped segments were coded by two independent raters. Kappa coefficients were computed and the kappa values were as follows: strategies, .76; responses, .92; outcomes, .90.

Situational factors were also noted for each entry attempt. First, the coders indicated whether the entry target was an individual child or two or more peers who were already engaged in a social interaction. Second, the similarity of gender between the initiator and target(s) was coded as follows: (a) same-gender if the larger(s) and the initiator were all or the same gender; (b) cross-gender if the initiator was attempting to engage an individual or group of the opposite sex; or (c) mixed-gender if the target was a group that included at least one member of each sex. Third, when the target was a single child, the following aspects of the relationship between the initiator and target were also noted: (a) whether or not they had chosen each other as best friend in the sociometric task, and (b) whether or not they fit the criteria for frequent companions during the period in which the entry occurred. This final set of codes was entered after all the behavioral codes were complete in order to avoid influencing the coders' perceptions with information about the ongoing relationship between the two children involved.

RESULTS

First, entry-related behaviors were examined for overall distributions across all the age groups. Second, 3 × 2 multivariate analyses of variance (MANOVAs) were used to measure the effects of age (3-year-olds, 4-year-olds, 5-year-olds) and gender on the distribution of strategies, responses, and outcomes. Univariate analyses were used to determine the effects on specific dependent measures. Significant between-age-group differences were identified with the Scheffé procedure. Third, the effects of specific entry strategies on the responses and outcomes or entry bids were ascertained using a univariate repeated-measures analysis of variance (ANOVA). Because the dependent measures were proportions, all of these analyses were done with arc-sin-transformed proportions and nontransformed proportions. A comparison of the analyses revealed negligible differences in the F values and level of significance. Thus, the following results are based on the nontransformed proportions. In the final part of the analysis, we used log-linear analyses to ascertain possible effects on the situational variables including the number and gender of the target(s) and the relationship between the initiator and target.

Overall Distribution of Entry Behaviors

In the total sample, the most frequently used strategy was wait and hover followed by synchronous, sociable, and controlling actions (see Table I). As can also be seen in Table I, target responses to entries were most frequently acknowledge, no response, or accept. Children overtly rejected their peers only 7% of the
Figure 1. Responses to specific strategies.

Figure 2. Outcomes of specific strategies.
these individual events are not independent. Chi-square analyses allow the examination of the frequencies of specific events that are pooled across all individuals (Laursen & Hartup, 1989). This type of analysis has previously been used to examine the relationships between the composition of the target group and the outcome of the entry (Phinney & Rotheram, 1982). The percentages that are reported are those that contributed most to the significant chi-squares. We also used log-linear analyses to screen out the chance results introduced by doing multiple chi-squares. Only those chi-squares that passed the log-linear model screening are reported here. Whether a child was attempting to initiate with an individual or a group was not related to the response of the target(s) but was related to the outcome. $\chi^2(3) = 7.66, p < .05$. Contrary to predictions, initiations with a single peer did not result in more positive interactions, but did result in fewer negative ones (6% vs. 10%). Gender of initiator and target was significantly related to target response. $\chi^2(12) = 9.80, p < .05$, but not to the outcome of the entries. When an initiator approached same-gender or mixed-gender target(s), he or she received a positive response 61% or 62% of the time, whereas attempts to engage cross-gender peer(s) received positive responses 53% of the time.

To examine possible effects of initiator-target relationships, we looked at only the initiations with individual targets. Frequency of contact was associated marginally with responses. $\chi^2(2) = 4.95, p < .10$, and significantly with outcome. $\chi^2(4) = 19.16, p < .001$. As expected, entry bids to frequent companions were more likely both to receive positive responses (65% vs. 57%) and more often evolved into positive social interactions (39% vs. 21%) than those made to casual acquaintances.

Age Differences. When the situational factors related to responses and outcomes of entry attempts were analyzed within age groups, some distinct patterns emerged. In the 3-year-old group, only one of the situational factors, frequency of contact, was related to either responses or outcomes. Frequent companions were more likely to become involved in positive interactions (42% vs. 21%). $\chi^2(3) = 11.01, p < .01$. The 4-year-old data, however, did not show any situational effects on either response or outcomes. The kindergartners' entry strategies with frequent companions were more likely to elicit positive responses (94%) than with those between casual acquaintances (59%). $\chi^2(3) = 7.57, p < .05$. Also in the kindergarten, unlike either of the other two groups, reciprocity of friendship choices was related to outcomes. Mutually selected best friends were more likely to end up in positive interactions (64%) than were peers who had not chosen each other as friends (21%). $\chi^2(3) = 9.64, p < .05$.

DISCUSSION

The children most frequently initiated contact by waiting and hovering or engaging in synchronous play with the host child(ren). Usually these newcomers received a positive or neutral response and ended up in parallel play with their peers. These low-risk entries enable children to enter interactions and groups without explicitly requesting permission or drawing attention to themselves. Given the fragility of social interactions and the tendency for young children to protect their interactive space (Corsaro, 1985; Hartup & Laursen, 1993), it is not surprising that young children often use these more subtle approaches.

Entry behaviors showed several age effects, which may both reflect and affect children’s evolving relationships with their peers. Similar to Putallaz’s findings, the numbers of entries declined by age. This pattern suggests that as children get older, their entries are accepted more often, as found in the kindergarten group here. Other possible interpretations are that older children’s interactions last longer or that they spend more time in solitary play and so do not need or want to initiate contact as frequently as their younger peers do. The kindergartners used fewer passive strategies than 3- and 4-year-olds, which may reflect a greater awareness of their peer’s perspectives (Selman, 1981; Selman & Schultz, 1990) and more confidence in their abilities to engage them. This assertiveness may also contribute to the higher acceptance rates in kindergarten. The kindergartners also more often approached peers with informational statements and questions, which may reflect an increase in more sophisticated types of play such as games with rules and symbolic play (Bergen, 1987). As found by Corsaro (1979), the numbers of disruptive entries declined by age, which supports the contention that children are learning to anticipate others’ reactions and are concluding that negative approaches do not work. Also, as children gain more impulse control, they may be less likely to disrupt an ongoing activity or group. Contrary to expectations, the percentages of sociable entries did not increase with age. Greeting, which was a common type of sociable entry, is a skill that children learn at an early age, and it may not depend on perspective-taking skills. In other words, children may approach others in a friendly, enthusiastic manner without necessarily tuning into what the target(s) are doing or feeling.

As expected, entry strategies were strongly related to both responses and outcomes. Passive and unobtrusive entry strategies (wait and hover, synchronous behavior) evoked positive and neutral responses from the targets. Not surprisingly, synchronous behavior most often ended up in parallel play, whereas waiting and hovering evolved into no social interaction. Friendly entries (sociable actions or statements and information questions or statements) received the highest percentage of positive responses and most frequently evolved into social interactions. However, sociable entries did not always evolve into positive interactions, suggesting that sociability per se may not guarantee an interaction. In some cases, children may simply exchange greetings and continue on their way. As expected, controlling entries were more likely than other entries to elicit rejections and to end in conflicts. At the same time, a high percentage of these entries evoked positive responses and turned into social interactions. Some children may disrupt or make their demands in ways that appeal to their peers.
using humor or flouting the rules). Alternatively, as Putallaz and Wasserman (1989) found, well-liked children may successfully enter even if they use strategies that appear negative to adults.

Interactive effects of age and strategy did not emerge, except for rejection responses. The youngest children rejected passive overtures more often than their older peers did, whereas the oldest ones were least likely to reject controlling bids. With less understanding of others’ perspectives, the 3-year-olds may readily interpret any approach as a threat. The oldest children, on the other hand, may be able to take all approaches, even efforts to control, more in stride and simply ignore the intrusion rather than reject it outright. These more experienced children also may have learned that outright rejection potentially leads to a teacher’s insistence that the targets accept the child and so use more subtle means of excluding newcomers.

When the situational factors were analyzed, some of them were associated with different entry responses and outcomes but not at the consistently high level that characterized the strategy effects. As predicted, initiations between frequent companions were more likely to evolve into positive social interactions, supporting the contention that an ongoing relationship between two peers makes it easier and safer for them to initiate contact (Corsaro, 1985; Jones, 1985: Masters & Furman, 1981). However, with the exception of the kindergartners, mutual sociometric best friend choices were not related to either responses or outcomes. Consistent with Corsaro’s (1979, 1985) observations that children protect their interactive space, entries into groups were more likely to end in negative social interactions than entries with individuals. Although boys’ and girls’ entry strategies did not differ, children were more successful with same-gender or mixed-gender targets than they were with cross-gender targets, which partially supports Phinney’s (1979) finding that same-gender entries were more successful than cross-gender ones. The presence of at least one same-gender target may facilitate the entry.

The analyses within age groups revealed that frequency of contact was a significant contextual factor in the 3-year-old and 5-year-old groups, but not in the 4-year-old group. Unlike the group as a whole, the kindergartners were more likely to accept mutual friends (as determined by the sociometric ratings), which suggests that these older children may be more accurate in reporting about their friends. Alternatively, the older children may base more of their momentary social decisions on ongoing friendships than their younger peers do (Selman, 1981; Selman & Schultz, 1990). The finding that frequency of contact was significant in the 3-year-olds and not in the 4-year-olds is puzzling and contradictory to the expected trend. One explanation may be that younger preschoolers may still depend somewhat on idiosyncratic routines of play that develop with familiarity as Howe (1987) observed in toddlers, whereas the 4-year-olds who use more words and symbolic play can initiate contact successfully with a broader range of peers.

Overall, preschool and kindergarten children’s entry strategies are the most highly related to the success of their entry attempts. These findings support interventions oriented toward helping preschoolers learn effective entry strategies, before reputation and shared history become salient in children’s reactions to each other. The differential success of specific strategies suggests that children should learn a number of strategies and, in particular, low-risk ones such as synchronous play. Given that children’s strategies and responses change during the preschool years, practitioners should consider developmental status of individual children when they assess and teach social skills in the preschool. Interventions and advice that are appropriate for younger preschoolers may not work with older ones and vice versa. The situational effects on entry success suggest that teachers can support children’s efforts to engage peers by helping them identify promising possibilities, such as a frequent companion playing alone, rather than a cross-gender group. Over the long term, children should not limit their social interactions to these situations. In the short term, however, those who an less skilled at making social overtures might gain confidence and experience by approaching peers in more optimal circumstances.

These findings should be viewed with some caution, as the participants were all in the same school. Teachers with different philosophies may encourage divergent social behaviors that potentially affect children’s entry strategies. Moreover, children from diverse cultural and social class groups may learn different conventions for initiating contacts. Future studies should examine these patterns across a wider range of classrooms and populations to assess the generalizability of these patterns.

REFERENCES

