4. A. # of peak groups = # of equivalent H types
 B. Chemical shift = proximity to various e- withdrawing groups - chemical environment of each proton
 C. Integration - relative proportion of each kind of equivalent hydrogen
 D. Splitting - number of neighbors
 - equivalent neighbors
 - non-equivalent neighbors
 - geminal protons on an alkene are non-equivalent, but splitting is tiny and may not be observed
 - splitting by protons cis or trans to one another across a double bond is large

5.

6. IR: $\lambda_{max} > 3000 \text{ cm}^{-1}$
 no -OH, -NH, C=O

 MS: Bromine! $M^+ = 170/172$
 $7 \times 12C = 84$
 $7 \times 1H = \frac{7}{91}$ base peak
 C7H7Br = 4 degrees of unsaturation

 'H-NMR - Benzene! + a CH2 group < DEPT
 'H-NMR - Benzene! + one other kind of H, probably immediately attached to the benzene (~4.3 ppm)
 Integration: ~ 5:2
 Splitting - lots @ 7.3 ppm (messy overlap)
 Singlet @ 4.3 ppm - the CH2 has no neighbors