Math 324 Problem 21 Solution April 20, 2004

How many monomials in n variables of degree k?

Let $n N_k$ be this number. If $n=1$ (i.e., just one variable x) there is only one monomial of degree k, namely x^k. That is, $1 N_k = 1$. If $n=2$ (i.e., there are two variables, (x,y)), then every monomial in x of degree $\leq k$ can be brought up to degree k by multiplying with the appropriate power of y: $y^k x$, $y^{k-1} x^2$, $y^{k-2} x^3$, ... , x^k.

That is, $2 N_k = \sum_{k'=0}^{k} N_{k'} = k+1$.

This observation gives a recursive formula for $n N_k$:

$$n N_k = \sum_{k'=0}^{k} n N_{k'}$$

in terms of $n-1 N_k$.

In particular, $3 N_k = \sum_{k'=0}^{k} (k'+1) = 1+2+...+(k+1) = \frac{(k+1)(k+2)}{2}$.