Homework 4: Policies in MDPs

Due Tuesday Oct 28, 11:55 PM


In this project, you will implement value iteration. You will test your agents on the Gridworld Markov Decision Process.

Files you'll edit:
valueIterationAgents.py A value iteration agent for solving known MDPs.
analysis.py A file to put your answers to questions given in the project.
qlearningAgents.py Q-learning agents (bonus exercise).
Files you should read but NOT edit:
mdp.py Defines methods on general MDPs.
learningAgents.py Defines the base classes ValueEstimationAgent and QLearningAgent, which your agents will extend.
util.py Utilities, including util.Counter, which is particularly useful for Q-learners.
gridworld.py The Gridworld implementation.
featureExtractors.py Classes for extracting features on (state,action) pairs. Used for the approximate Q-learning agent (in qlearningAgents.py).
Files you can ignore:
environment.py Abstract class for general reinforcement learning environments. Used by gridworld.py.
graphicsGridworldDisplay.py Gridworld graphical display.
graphicsUtils.py Graphics utilities.
textGridworldDisplay.py Plug-in for the Gridworld text interface.
crawler.py The crawler code and test harness. You will run this but not edit it.
graphicsCrawlerDisplay.py GUI for the crawler robot.
autograder.py Project autograder
testParser.py Parses autograder test and solution files
testClasses.py General autograding test classes
test_cases/ Directory containing the test cases for each question
reinforcementTestClasses.py Assignment specific autograding test classes

Files to Edit and Submit: You will fill in portions of valueIterationAgents.py, analysis.py, and possibly qlearningAgents.py during the assignment. You should submit these files with your code and comments. Please do not change the other files in this distribution or submit any of the original files other than these files.

Getting Help: You are not alone! If you find yourself stuck on something, post a question to Piazza or contact the instructor for help.


To get started, run Gridworld in manual control mode, which uses the arrow keys:

python gridworld.py -m

You will see the two-exit layout from class. The blue dot is the agent. Note that when you press up, the agent only actually moves north 80% of the time. Such is the life of a Gridworld agent!

You can control many aspects of the simulation. A full list of options is available by running:

python gridworld.py -h

The default agent moves randomly

python gridworld.py -g MazeGrid

You should see the random agent bounce around the grid until it happens upon an exit. Not the finest hour for an AI agent.

Note: The Gridworld MDP is such that you first must enter a pre-terminal state (the double boxes shown in the GUI) and then take the special 'exit' action before the episode actually ends (in the true terminal state called TERMINAL_STATE, which is not shown in the GUI). If you run an episode manually, your total return may be less than you expected, due to the discount rate (-d to change; 0.9 by default).

Look at the console output that accompanies the graphical output (or use -t for all text). You will be told about each transition the agent experiences (to turn this off, use -q).

As in Pacman, positions are represented by (x,y) Cartesian coordinates and any arrays are indexed by [x][y], with 'north' being the direction of increasing y, etc. By default, most transitions will receive a reward of zero, though you can change this with the living reward option (-r).

Question 1 (6 points): Value Iteration

Write a value iteration agent in ValueIterationAgent, which has been partially specified for you in valueIterationAgents.py. Your value iteration agent is an offline planner, not a real-time learning agent, and so the relevant training option is the number of iterations of value iteration it should run (option -i) in its initial planning phase. ValueIterationAgent takes an MDP on construction and runs value iteration for the specified number of iterations before the constructor returns.

Value iteration computes k-step estimates of the optimal values, Vk. In addition to running value iteration, implement the following methods for ValueIterationAgent using Vk.

  • computeActionFromValues(state) computes the best action according to the value function given by self.values.
  • computeQValueFromValues(state, action) returns the Q-value of the (state, action) pair given by the value function given by self.values.

These quantities are all displayed in the GUI: values are numbers in squares, Q-values are numbers in square quarters, and policies are arrows out from each square.

Important: Use the "batch" version of value iteration where each vector Vk is computed from a fixed vector Vk-1 (like we did in class), not the "online" version where one single weight vector is updated in place. This means that when a state's value is updated in iteration k based on the values of its successor states, the successor state values used in the value update computation should be those from iteration k-1 (even if some of the successor states had already been updated in iteration k).

Note: A policy synthesized from values of depth k (which reflect the next k rewards) will actually reflect the next k+1 rewards (i.e. you return pik+1). Similarly, the Q-values will also reflect one more reward than the values (i.e. you return Qk+1).

You should return the synthesized policy pik+1.

Hint: Use the util.Counter class in util.py, which is a dictionary with a default value of zero. Methods such as totalCount should simplify your code. However, be careful with argMax: the actual argmax you want may be a key not in the counter!

Note: Make sure to handle the case when a state has no available actions in an MDP (think about what this means for future rewards).

To test your implementation, run the autograder:

python autograder.py -q q1

The following command loads your ValueIterationAgent, which will compute a policy and execute it 10 times. Press a key to cycle through values, Q-values, and the simulation. You should find that the value of the start state (V(start), which you can read off of the GUI) and the empirical resulting average reward (printed after the 10 rounds of execution finish) are quite close.

python gridworld.py -a value -i 100 -k 10

Hint: On the default BookGrid, running value iteration for 5 iterations should give you this output:

python gridworld.py -a value -i 5
value iteration with k=5

Question 2 (1 point): Bridge Crossing Analysis

BridgeGrid is a grid world map with the a low-reward terminal state and a high-reward terminal state separated by a narrow "bridge", on either side of which is a chasm of high negative reward. The agent starts near the low-reward state. With the default discount of 0.9 and the default noise of 0.2, the optimal policy does not cross the bridge. Change only ONE of the discount and noise parameters so that the optimal policy causes the agent to attempt to cross the bridge. Put your answer in question2() of analysis.py. (Noise refers to how often an agent ends up in an unintended successor state when they perform an action.) The default corresponds to:

python gridworld.py -a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2
value iteration with k=100

To check your answer, run the autograder:

python autograder.py -q q2

Question 3 (5 points): Policies

Consider the DiscountGrid layout, shown below. This grid has two terminal states with positive payoff (in the middle row), a close exit with payoff +1 and a distant exit with payoff +10. The bottom row of the grid consists of terminal states with negative payoff (shown in red); each state in this "cliff" region has payoff -10. The starting state is the yellow square. We distinguish between two types of paths: (1) paths that "risk the cliff" and travel near the bottom row of the grid; these paths are shorter but risk earning a large negative payoff, and are represented by the red arrow in the figure below. (2) paths that "avoid the cliff" and travel along the top edge of the grid. These paths are longer but are less likely to incur huge negative payoffs. These paths are represented by the green arrow in the figure below.


In this question, you will choose settings of the discount, noise, and living reward parameters for this MDP to produce optimal policies of several different types. Your setting of the parameter values for each part should have the property that, if your agent followed its optimal policy without being subject to any noise, it would exhibit the given behavior. If a particular behavior is not achieved for any setting of the parameters, assert that the policy is impossible by returning the string 'NOT POSSIBLE'.

Here are the optimal policy types you should attempt to produce:

    1. Prefer the close exit (+1), risking the cliff (-10)
    2. Prefer the close exit (+1), but avoiding the cliff (-10)
    3. Prefer the distant exit (+10), risking the cliff (-10)
    4. Prefer the distant exit (+10), avoiding the cliff (-10)
    5. Avoid both exits and the cliff (so an episode should never terminate)

To check your answers, run the autograder:

python autograder.py -q q3

question3a() through question3e() should each return a 3-item tuple of (discount, noise, living reward) in analysis.py.

Note: You can check your policies in the GUI. For example, using a correct answer to 3(a), the arrow in (0,1) should point east, the arrow in (1,1) should also point east, and the arrow in (2,1) should point north.

Note: On some machines you may not see an arrow. In this case, press a button on the keyboard to switch to qValue display, and mentally calculate the policy by taking the arg max of the available qValues for each state.

Question 4 (BONUS): Q-Learning

This bonus is optional and goes beyond what we discussed in class so far. If you attempt this problem, you should read section 21.3.2 in the textbook.

Note that your value iteration agent does not actually learn from experience. Rather, it ponders its MDP model to arrive at a complete policy before ever interacting with a real environment. When it does interact with the environment, it simply follows the precomputed policy (e.g. it becomes a reflex agent). This distinction may be subtle in a simulated environment like a Gridword, but it's very important in the real world, where the real MDP is not available.

You will now write a Q-learning agent, which does very little on construction, but instead learns by trial and error from interactions with the environment through its update(state, action, nextState, reward) method. A stub of a Q-learner is specified in QLearningAgent in qlearningAgents.py, and you can select it with the option '-a q'. For this question, you must implement the update, computeValueFromQValues, getQValue, and computeActionFromQValues methods.

Note: For computeActionFromQValues, you should break ties randomly for better behavior. The random.choice() function will help. In a particular state, actions that your agent hasn't seen before still have a Q-value, specifically a Q-value of zero, and if all of the actions that your agent has seen before have a negative Q-value, an unseen action may be optimal.

Important: Make sure that in your computeValueFromQValues and computeActionFromQValues functions, you only access Q values by calling getQValue .

With the Q-learning update in place, you can watch your Q-learner learn under manual control, using the keyboard:

python gridworld.py -a q -k 5 -m

Recall that -k will control the number of episodes your agent gets to learn. Watch how the agent learns about the state it was just in, not the one it moves to, and "leaves learning in its wake." Hint: to help with debugging, you can turn off noise by using the --noise 0.0 parameter (though this obviously makes Q-learning less interesting). If you manually steer Pacman north and then east along the optimal path for four episodes, you should see the following Q-values:



Submit a zip of your python files (valueIterationAgents.py, analysis.py, and if you complete the bonus, qlearningAgents.py) on moodle. Remember to comment your code.

capsuleClassic layout

Pacman seeks reward.
Should he eat or should he run?
When in doubt, Q-learn.