A1 Let \(n \) be a fixed positive integer. How many ways are there to write \(n \) as a sum of positive integers, \(n = a_1 + a_2 + \cdots + a_k \), with \(k \) an arbitrary positive integer and \(a_1 \leq a_2 \leq \cdots \leq a_k \leq a_1 + 1 \)? For example, with \(n = 4 \) there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.

A2 Let \(a_1, a_2, \ldots, a_n \) and \(b_1, b_2, \ldots, b_n \) be nonnegative real numbers. Show that
\[
\left(a_1 a_2 \cdots a_n \right)^{1/n} + \left(b_1 b_2 \cdots b_n \right)^{1/n} \\
\leq \left((a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n) \right)^{1/n}.
\]

A3 Find the minimum value of
\[
| \sin x + \cos x + \tan x + \cot x + \sec x + \csc x |
\]
for real numbers \(x \).

A4 Suppose that \(a, b, c, A, B, C \) are real numbers, \(a \neq 0 \) and \(A \neq 0 \), such that
\[
| ax^2 + bx + c | \leq | Ax^2 + Bx + C |
\]
for all real numbers \(x \). Show that
\[
|b^2 - 4ac| \leq |B^2 - 4AC|.
\]

A5 A Dyck \(n \)-path is a lattice path of \(n \) upsteps \((1, 1)\) and \(n \) downsteps \((1, -1)\) that starts at the origin \(O \) and never dips below the \(x \)-axis. A return is a maximal sequence of contiguous downsteps that terminates on the \(x \)-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck \(n \)-paths with no return of even length and the Dyck \((n - 1)\)-paths.

A6 For a set \(S \) of nonnegative integers, let \(r_S(n) \) denote the number of ordered pairs \((s_1, s_2)\) such that \(s_1 \in S \), \(s_2 \in S \), \(s_1 \neq s_2 \), and \(s_1 + s_2 = n \). Is it possible to partition the nonnegative integers into two sets \(A \) and \(B \) in such a way that \(r_A(n) = r_B(n) \) for all \(n \)?

B1 Do there exist polynomials \(a(x), b(x), c(y), d(y) \) such that
\[
1 + xy + x^2 y^2 = a(x)c(y) + b(x)d(y)
\]
holds identically?

B2 Let \(n \) be a positive integer. Starting with the sequence \(1, 1/2, 1/3, \ldots, 1/n \), form a new sequence of \(n - 1 \) entries \(3/4, 5/12, \ldots, (2n - 1)/2n(n - 1) \) by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of \(n - 2 \) entries, and continue until the final sequence produced consists of a single number \(x_n \). Show that \(x_n < 2/n \).

B3 Show that for each positive integer \(n \),
\[
n! = \prod_{i=1}^{n} \text{lcm}\{1, 2, \ldots, |n/i|\}.
\]
(Here \(\text{lcm} \) denotes the least common multiple.)

B4 Let
\[
f(z) = az^4 + bz^3 + cz^2 + dz + e
\]
where \(a, b, c, d, e \) are integers, \(a \neq 0 \). Show that if \(r_1 + r_2 \) is a rational number and \(r_1 + r_2 \neq r_3 + r_4 \), then \(r_1 r_2 \) is a rational number.

B5 Let \(A, B, \) and \(C \) be equidistant points on the circumference of a circle of unit radius centered at \(O \), and let \(P \) be any point in the circle’s interior. Let \(a, b, c \) be the distance from \(P \) to \(A, B, C \), respectively. Show that there is a triangle with side lengths \(a, b, c \) and that the area of this triangle depends only on the distance from \(P \) to \(O \).

B6 Let \(f(x) \) be a continuous real-valued function defined on the interval \([0, 1]\). Show that
\[
\int_0^1 \int_0^1 |f(x) + f(y)| \, dx \, dy \geq \int_0^1 |f(x)| \, dx.
\]