1. Show that the equation \(x^5 + 10x + 3 = 0 \) has exactly one real root.

Solution: Let \(f(x) = x^5 + 10x + 3 \). Then \(f(-1) = -8 \) and \(f(0) = 3 \). Since 0 is between \(-8\) and 3, and \(f \) is continuous everywhere (because it’s a polynomial), the Intermediate Value Theorem guarantees that there is some number \(c \) in \((-1, 0)\) for which \(f(c) = 0 \). That is, the given equation has at least one root.

Now suppose that the equation has two distinct roots. Let \(a \) and \(b \) denote the two roots, so that \(f(a) = f(b) = 0 \). The function \(f \) is continuous and differentiable everywhere, so we can use the Mean Value Theorem to conclude that there is some number \(c \) in \((a, b)\) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a} = 0.
\]

On the other hand, \(f'(x) = 5x^4 + 10 \), and since \(x^4 \geq 0 \) for all \(x \), we conclude that \(f'(x) \geq 10 \) for all \(x \). This contradicts the existence of a number \(c \) for which \(f'(c) = 0 \), so we must conclude that there are not two distinct roots. Thus there is at most one solution to the given equation.

2. Show that the equation \(\cos x = 2x \) has at most one solution.

Solution: Let \(f(x) = \cos x - 2x \). We need to show that \(f \) has at most one root. Suppose not. Then there are two distinct numbers, \(a \) and \(b \), such that \(f(a) = f(b) = 0 \). The function \(f \) is continuous and differentiable everywhere, so we can invoke the Mean Value Theorem to conclude that there is a number \(c \) in \((a, b)\) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a} = 0.
\]

However, \(f'(x) = -\sin x - 2 \), so if \(f'(c) = 0 \), then we get

\[
 0 = f'(c) = -\sin c - 2,
\]

which implies that \(\sin c = -2 \). Since \(\sin x \) lies in the interval \([-1, 1]\) for every real number \(x \), we have a contradiction. There can be at most one solution to the given equation.

3. Show that the equation \(x^4 + 4x + c = 0 \) has at most two real roots.

Solution: Let \(f(x) = x^4 + 4x + c \). Note that since \(f \) is a polynomial, it is continuous and differentiable everywhere, as are all of its derivatives.

Suppose that \(f \) has three distinct roots, \(a_1, a_2, \) and \(a_3 \). Choose the names so that \(a_1 < a_2 < a_3 \). Since \(f \) is continuous on \([a_1, a_2]\) and differentiable on \((a_1, a_2)\), by the Mean Value Theorem, there is a number \(b_1 \) in \((a_1, a_2)\), such that

\[
 f'(b_1) = \frac{f(a_2) - f(a_1)}{a_2 - a_1} = 0.
\]
Similarly, since \(f \) is continuous on \([a_2, a_3]\) and differentiable on \((a_2, a_3)\), by the Mean Value Theorem, there is a number \(b_2 \) in \((a_2, a_3)\), such that

\[
f'(b_2) = \frac{f(a_3) - f(a_2)}{a_3 - a_2} = 0.
\]

Taking a derivative of \(f \), we get

\[
f'(x) = 4x^3 + 4
\]

We can solve the equation \(4x^3 + 4 = 0 \); we get

\[
4x^3 = -1
\]
\[
x^3 = -1
\]
\[
x = -1.
\]

Now since \(b_1 \) and \(b_2 \) are solutions to \(f'(x) = 0 \), and there is only one solution to \(f'(x) = 0 \), we must have \(b_1 = -1 \) and \(b_2 = -1 \). Thus \(b_1 = b_2 \). But this is a contradiction, because \(b_1 \) is in \((a_1, a_2)\) and \(b_2 \) is in \((a_2, a_3)\), so \(b_1 < a_2 < b_2 \), which implies \(b_1 < b_2 \).

Since our assumption that \(f \) has three roots led to a contradiction, we conclude that \(f \) has at most two roots.