1. Let G_1 and G_2 be groups. Define an isomorphism from G_1 to G_2.

Solution: An isomorphism from G_1 to G_2 is a mapping ϕ from G_1 to G_2 that is one-to-one, onto, and operation-preserving, in the sense that

$$\phi(gh) = \phi(g)\phi(h)$$

for all g and h in G_1.

2. State Cayley’s Theorem.

Solution: Every group is isomorphic to a group of permutations.