1. Complete the definition: Two elements x and y of a group G are called conjugate if . . .
Solution: . . . there exists a $g \in G$ such that $gxg^{-1} = y$.

2. Let G be a group of permutations of a set S. Suppose $a \in S$. Define the stabilizer of a in G.
Solution: The stabilizer of a in G is the set $\{g \in G : g(a) = a\}$.

3. The group S_3 is a group of permutations of the set $\{1, 2, 3\}$. Find $\text{stab}_{S_3}(1)$.
Solution: The only elements in S_3 that do not move 1 are the identity and the transposition $(2\ 3)$. So

$$\text{stab}_{S_3}(1) = \{e, (2\ 3)\}.$$