1. (§2.1, problem 15) Find integers \(a_1, a_2, a_3, a_4, a_5 \) such that every integer \(x \) satisfies at least one of the congruences

\[x \equiv a_1 \pmod{2}, \quad x \equiv a_2 \pmod{3}, \quad x \equiv a_3 \pmod{4}, \quad x \equiv a_4 \pmod{6}, \quad x \equiv a_5 \pmod{12}. \]

Explain how you know your answer works, and, if applicable, how you found it.

Solution: All the given moduli are divisors of 12, so if we can choose the \(a_i \) so that each of the numbers \(0, 1, \ldots, 11 \) satisfies at least one of the congruences, then we will be finished.

(Why? If \(y \) is any integer then there exists an \(x \in \{0, 1, 2, \ldots, 11\} \) such that \(y \equiv x \pmod{12} \). If we have chosen the \(a_i \) as above, then \(x \) is congruent some \(a_i \) modulo 12, and so by transitivity, \(y \equiv a_i \pmod{12} \). The mod-12 congruence implies any of the other congruences in this problem.)

If we take \(a_1 = 0 \), then all of the even numbers satisfy the first congruence.

If we take \(a_2 = 1 \), then in addition, the numbers 1 and 7 satisfy the second congruence. (Eight down, four remaining.)

If we take \(a_3 = 1 \), then in addition, the numbers 5 and 9 satisfy the congruence. Only the numbers 8 and 11 remain, and we have two more congruences to play with, so we predict victory in two moves.

Let \(a_4 = 2 \); that takes care of 8. Let \(a_5 = 11 \).

2. (a) Let \(p \) and \(q \) be primes. Prove that if \(p \equiv 1 \pmod{q - 1} \), then \(a^p \equiv a \pmod{q} \) for every integer \(a \).

Solution: Case 1: Suppose \(q | a \). Then \(a^p \equiv 0 \pmod{q} \) and \(a \equiv 0 \pmod{q} \), so that \(a^p \equiv a \pmod{q} \).

Case 2: Suppose \(q \nmid a \). Suppose \(p \equiv 1 \pmod{q - 1} \). Then there is an integer \(k \) such that

\[p = k(q - 1) + 1. \]

Thus

\[
\begin{align*}
a^p &= a^{k(q-1)}a \\
&= a \cdot (a^k)^{(q-1)}. \quad (1)
\end{align*}
\]
Now since $q \mid a$, we also know that $q \mid a^k$, so by Fermat’s little theorem, we have

$$(a^k)^{(q-1)} \equiv 1 \pmod{q}.$$

Thus from (1) and (2) above, we get

$$a^p \equiv a \cdot (a^k)^{(q-1)} \pmod{q}$$
$$\equiv a \cdot 1 \pmod{q}$$
$$\equiv a \pmod{q}$$

as required.

(b) (§2.1, problem 20) Use the result in part (2a) to prove that $n^7 - n$ is divisible by 42 for any integer n.

Proof: Since 42 = [2, 3, 7], the result will follow if we can show that 2, 3, and 7 all divide $n^7 - n$ for every integer n. That is, we need to show $n^7 - n \equiv 0$ modulo 2, 3, and 7.

We observe that 7 is congruent to 1 modulo $(2-1)$, modulo $(3-1)$, and modulo $(7-1)$, so by the result above, the congruences

$$n^7 \equiv n \pmod{2}$$
$$n^7 \equiv n \pmod{3}$$
$$n^7 \equiv n \pmod{7}$$

all hold for every integer n.

3. (§2.1, problem 27) Prove that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is an integer for every integer n.

Proof: Rewriting the given expression with a common denominator, we get

$$\frac{3n^5 + 5n^3 + 7n}{15}.$$

Our task is thus to prove that $3n^5 + 5n^3 + 7n \equiv 0 \pmod{15}$ for every integer n. This will follow if we can establish the two congruences

$$3n^5 + 5n^3 + 7n \equiv 0 \pmod{3}$$
$$3n^5 + 5n^3 + 7n \equiv 0 \pmod{5}.$$

Using the properties of congruences, we have

$$3n^5 + 5n^3 + 7n \equiv 2n^3 + n \pmod{3}.$$
By Theorem 2.8, for any integer \(n \), \(n^3 \equiv n \pmod{3} \), from which it follows that
\[
2n^3 + n \equiv 2n + n \equiv 3n \equiv 0 \pmod{3},
\]
and we have shown that \(3n^5 + 5n^3 + 7n \equiv 0 \pmod{3} \).
Similarly,
\[
3n^5 + 5n^3 + 7n \equiv 3n^5 + 2n \pmod{5},
\]
and again by Theorem 2.8, \(n^5 \equiv n \pmod{5} \) for any \(n \), so that
\[
3n^2 + 2n \equiv 3n + 2n \equiv 5n \equiv 0 \pmod{5}.
\]
We have shown that for any integer \(n \), \(3n^5 + 5n^3 + 7n \equiv 0 \pmod{5} \).

Since \(3n^5 + 5n^3 + 7n \) is a multiple of both 3 and 5, it must also be a multiple of \(3 \times 5 \), and since \((3, 5) = 1\), we know that \(3 \times 5 = 15 \). Thus \(3n^5 + 5n^3 + 7n \) is divisible by 15 for any integer \(n \), and the proof is complete.

4. (§2.1, problem 46) Show that for any prime \(p \), if \(a^p \equiv b^p \pmod{p} \), then \(a^p \equiv b^p \pmod{p^2} \).

Proof: Suppose \(a^p \equiv b^p \pmod{p} \). From Theorem 2.8, we know that
\[
a^p \equiv a \pmod{p} \text{ and } b^p \equiv b \pmod{p},
\]
even if \(p \) happens to divide \(a \) or \(b \). From this it follows that \(a \equiv b \pmod{p} \), that is \(p | (a - b) \).

Now we have the factorization
\[
(a - b)(a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1}) = a^p - b^p.
\]
Since \(p | (a - b) \), to show that \(p^2 | (a^p - b^p) \), we need to show that
\[
p | (a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1}).
\]
Since \(a \equiv b \pmod{p} \), we have, for each \(i \) with \(1 \leq i \leq p \),
\[
a^{p-i}b^{i-1} \equiv a^{(p-i)+(i-1)} \equiv a^{p-1} \pmod{p}.
\]
That is, every term in \((a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1})\) is congruent to \(a^{p-1} \) modulo \(p \). Since there are \(p \) terms in the sum, we have
\[
(a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1}) \equiv pa^{p-1} \pmod{p}.
\]
But clearly $pa^{p-1} \equiv 0 \pmod{p}$, because $p \equiv 0 \pmod{p}$. It follows that p divides

$$(a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1}),$$

and since p divides $(a - b)$ as well, the product

$$(a - b)(a^{p-1} + a^{p-2}b + a^{p-3}b^2 + \cdots + ab^{p-2} + b^{p-1}) = a^p - b^p$$

is divisible by p^2. Thus

$$a^p \equiv b^p \pmod{p}$$

and the proof is complete.

Alternate Proof: Suppose $a^p \equiv b^p \pmod{p}$. By Theorem 2.8, we know $a \equiv a^p \pmod{p}$ and $b \equiv b^p \pmod{p}$. It follows that $a \equiv b \pmod{p}$. Write

$$a = p\alpha + r_1$$

$$b = p\beta + r_2$$

where α, β, r_1, and r_2 are integers, and $0 \leq r_1, r_2 \leq p$. Then because $p|(a - b)$, it follows that $p|(r_1 - r_2)$, and since $|r_1 - r_2| < p$, we must have $r_1 = r_2$. Let r denote their common value.

Then

$$a^p = (p\alpha + r)^p = (p\alpha)^p + \left(\sum_{i=1}^{p-1} \binom{p}{i} (p\alpha)^{p-i} r^i\right) + r^p.$$

Since $p \geq 2$, we know p^2 divides $(p\alpha)^p$.

Moreover, by an earlier problem, we know p divides $\binom{p}{i}$ for each i with $1 \leq i \leq p - 1$, and certainly p divides $(p\alpha)^{p-i}$ for each i less than p. Thus p^2 divides each term of the sum

$$\sum_{i=1}^{p-1} \binom{p}{i} (p\alpha)^{p-i} r^i,$$
and so p^2 divides the entire sum. From this it follows that p^2 divides $a^p - r^p$, so we get

$$a^p \equiv r^p \pmod{p^2}.$$

By an analogous argument,

$$b^p \equiv r^p \pmod{p^2},$$

and so by Theorem 2.1(1) and (2), we get

$$a^p \equiv b^p \pmod{p^2},$$

as required.

5. (§2.1, problem 50) For every positive integer n, prove that there exists a (non-zero) multiple m of n whose base-ten representation contains only the digits 0 and 1. Prove that the same holds for the digits 0 and 2, for 0 and 3, and so on up to the digits 0 and 9, but for no other pair of digits.

Proof: If $n = 1$, then $n|1$, and if $n = 2$, then $n|10$.

Now suppose $n > 2$.

Suppose first that $2|n$ and $5|n$. Then $(10, n) = 1$, and by Theorem 2.8, we get

$$10^{\varphi(n)} \equiv 1 \pmod{n}.$$

Then $(10^{\varphi(n)})^k \equiv 1 \pmod{n}$ for every positive integer k, and since $\varphi(n) \geq 2$, all the numbers $k\varphi(n)$ are different, so that each of the numbers $10^{k\varphi(n)}$ is a distinct power of ten, and each is congruent to 1 modulo n.

Let $N = \sum_{k=1}^{n} 10^{k\varphi(n)}$. Then the base-ten representation of N contains exactly n ones and all the other digits are zero. Furthermore,

$$N \equiv \sum_{k=1}^{n} 10^{k\varphi(n)} \equiv \sum_{k=1}^{n} 1 \equiv n \pmod{n},$$

so that N is a non-zero multiple of N.

(Note: If n is a large prime, do not try this at home.)

Now suppose $n = 2^a 5^b m$, where m is relatively prime to 5 and 2. Then we find a number M made up of ones and zeros such that m divides M. Let $c = \max\{a, b\}$, and let $N = 10^c M$.

Then $n = 2^a 5^b m$ divides $2^c 5^d m = 10^e m$, which divides $10^f M = N$ (by Theorem 1.1(6)), so by Theorem 1.1(2), n divides N. Furthermore, since M is made up of ones and zeros, so is N.

The numbers $2N$, $3N$, $4N$, and so on satisfy the requirements of the second sentence above.

Since every multiple of 10 has at least one zero in its base-ten representation, there is no way to satisfy the requirements of this claim with any pair of digits that does not contain a zero.