1. Let \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = 7x - 4 \). Find a function \(g \) so that \(g \circ f(x) = x \) for all \(x \).

 Solution: The function \(g \) must add 4 to its input and then divide by 7. We get
 \[
 g(x) = \frac{x + 4}{7}.
 \]

2. Find multiplicative inverses for 2 and 3 modulo 7.

 Solution: By trial and error, we find that \(2 \times 4 \equiv 1 \pmod{7} \) and \(3 \times 5 \equiv 1 \pmod{7} \).

 The multiplicative inverse of 2 mod 7 is 4;
 the multiplicative inverse of 3 mod 7 is 5.

3. Solve the congruence \(9x + 15 \equiv 10 \pmod{89} \). Find a solution in the set \(\{0, 1, 2, \ldots, 88\} \).

 (HINT: \(9 \times 10 = 90 \).)

 Solution: We subtract 15 from both sides to get
 \[
 9x \equiv -5 \pmod{89}
 \equiv 84 \pmod{89}.
 \]

 By the hint, we know that the multiplicative inverse of 9 is 10, so we multiply both sides by 10 to get
 \[
 x \equiv 840 \pmod{89}.
 \]

 Finally, we find that \(840 \mod 89 = 39 \).

 The solution we’re looking for is \(x = 39 \).