A1. Find $\mathcal{L}\{g(t)\}$ where $g(t) = \begin{cases}
 0 & \text{if } 0 \leq t < 2 \\
 2 & \text{if } 4 \leq t.
\end{cases}$

Solution: Writing g in terms of Heaviside functions, we get

$$g(t) = (t - 2)(u_2(t) - u_4(t)) + 2u_4(t) = (t - 2)(u_2(t)) - (t - 4)u_4(t).$$

Since the Laplace transform of $(t - c)u_c(t)$ is e^{-cs} times the Laplace transform of t, we get

$$\mathcal{L}\{g(t)\} = \frac{e^{-2s}}{s^2} - \frac{e^{-4s}}{s^2}.$$

A2. (a) Use integration by parts to prove the following:

Theorem: For $n \geq 1$ and $s > 0$, $\mathcal{L}\{t^n\} = \frac{n}{s} \mathcal{L}\{t^{n-1}\}$.

Be sure to point out where you use the hypothesis $s > 0$.

Solution: By definition of the Laplace transform,

$$\mathcal{L}\{t^n\} = \int_{0}^{\infty} e^{-st}t^n \, dt.$$

$$= \lim_{A \to \infty} \int_{0}^{A} e^{-st}t^n \, dt.$$

We let $u = t^n \, dt$ and $v = e^{-st} \, dt$ and apply integration by parts. We have $du = nt^{n-1} \, dt$ and, since $s \neq 0$, $v = -\frac{e^{-st}}{s}$.

$$\lim_{A \to \infty} \int_{0}^{A} e^{-st}t^n \, dt = \lim_{A \to \infty} \left[\frac{t^n e^{-st}}{s} \right]_{0}^{A} + \int_{0}^{\infty} nt^{n-1}e^{-st} \, dt$$

$$= \lim_{A \to \infty} \left[0 + \frac{A^n e^{-sA}}{s} \right] + \frac{n}{s} \int_{0}^{\infty} t^{n-1}e^{-st} \, dt.$$
By the definition of the Laplace transform, the second term on the right is
$$\frac{n}{s}L\{t^{n-1}\}$$. The limit in the first term on the right is
$$\lim_{A \to \infty} \frac{A^n}{e^{sA}}.$$ Since $s > 0$, we have an increasing exponential in the denominator, and a polynomial in the numerator. Since exponentials grow faster than polynomials (see below), we have $\lim_{A \to \infty} \frac{A^n}{e^{sA}} = 0$, and thus the first term on the right is 0. In summary, we have
$$L\{t^n\} = \frac{n}{s}L\{t^{n-1}\}.$$ for $n \geq 1$ and $s > 0$.

Here is a proof that $\lim_{x \to \infty} \frac{x^n}{e^{ax}} = 0$ for $a > 0$ and $n \geq 0$. We proceed by induction on n.

Base case: $n = 0$. We have $\lim_{x \to \infty} \frac{1}{e^{ax}}$, which is certainly zero, since $e^{ax} \to \infty$ as $x \to \infty$.

Inductive step. Let $n \geq 1$, and assume that $\lim_{x \to \infty} \frac{x^{n-1}}{e^{ax}} = 0$. Since $n \geq 1$, we know that $x^n \to \infty$ as $x \to \infty$, and since $a > 0$, we know that $e^{ax} \to \infty$ as well. We may apply l’Hospital’s rule to get
$$\lim_{x \to \infty} \frac{x^n}{e^{ax}} = \lim_{x \to \infty} \frac{n x^{n-1}}{ae^{ax}} = \frac{n}{a} \lim_{x \to \infty} \frac{x^{n-1}}{e^{ax}} = \frac{n}{a} \cdot 0 = 0.$$

(b) Given that $L\{1\} = \frac{1}{s}$ (for $s > 0$), use the formula in part A2a to find $L\{t\}$, $L\{t^2\}$, and $L\{t^3\}$. Based on these results, make a conjecture about the value of $L\{t^n\}$ for any positive integer n.

(Optionally, use induction to prove that your conjecture is correct.)
Solution: We have

\[
\mathcal{L}\{t\} = \frac{1}{s} \mathcal{L}\{1\} = \frac{1}{s^2} \quad (s > 0)
\]

\[
\mathcal{L}\{t^2\} = \frac{2}{s} \mathcal{L}\{t\} = \frac{2}{s^3} \quad (s > 0)
\]

\[
\mathcal{L}\{t^3\} = \frac{3}{s} \mathcal{L}\{t^2\} = \frac{6}{s^4} \quad (s > 0).
\]

Each time we increase the exponent on \(t \), we multiply the denominator of the transform by \(s \) and the numerator by the new exponent. We conjecture that

\[
\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \quad (s > 0).
\]

Here's an inductive proof.

We are given that \(\mathcal{L}\{t^0\} = \frac{1}{s} \), so the conjecture holds for \(n = 0 \).

Now suppose that \(n \geq 1 \) and \(\mathcal{L}\{t^{n-1}\} = \frac{(n-1)!}{s^n} \) for \(s > 0 \). We want to show that

\[
\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \quad \text{for} \quad s > 0.
\]

By the result above, we have

\[
\mathcal{L}\{t^n\} = \frac{n}{s} \mathcal{L}\{t^{n-1}\} = \frac{n}{s} \frac{(n-1)!}{s^n} = \frac{n!}{s^{n+1}},
\]

valid for \(s > 0 \). This completes the proof.
B1. Use Laplace transforms to solve the initial value problem

\[y'' + 5y' + 6y = g(t), \quad y(0) = y'(0) = 0, \]

where

\[g(t) = \begin{cases}
6 & \text{if } 0 \leq t < 1 \\
-6 & \text{if } 1 \leq t < 2 \\
0 & \text{if } 2 \leq t.
\end{cases} \]

Then use a computer to plot your solution.

Solution: Writing \(g(t) \) in terms of Heaviside functions, we get

\[g(t) = 6(1 - 2u_1(t) + u_2(t)). \]

Taking the Laplace transform of both sides of the given equation yields

\[(s^2 + 5s + 6)Y = \frac{6}{s}(1 - 2e^{-t} + e^{-2t}) \]

where \(Y \) is the Laplace transform of our solution. Solving for \(Y \), we get

\[Y = \frac{6}{s(s^2 + 5s + 6)}(1 - 2e^{-t} + e^{-2t}). \]

It will be convenient to set

\[H(s) = \frac{6}{s(s^2 + 5s + 6)} \]

and let \(h(t) \) denote the inverse Laplace transform of \(H(s) \).

The denominator of \(H(s) \) factors as \(s(s + 2)(s + 3) \), and using partial fractions, we find that

\[H(s) = \frac{1}{s} - \frac{3}{s + 2} + \frac{2}{s + 3} \]

so that

\[h(t) = 1 - 3e^{-2t} + 2e^{-3t}. \tag{1} \]

It follows that our solution \(y(t) \), the inverse Laplace transform of \(Y(s) \) is given by

\[y(t) = h(t) - 2u_1(t)h(t - 1) + u_2(t)h(t - 2) \]
where \(h(t) \) is given in equation (1).

Here is the solution, plotted by Maple:

\[
\begin{align*}
hb := t &\rightarrow 1 - 3\exp(-2t) + 2\exp(-3t) \\
yb := t &\rightarrow hb(t) - 2\text{Heaviside}(t-1)*hb(t-1) + \\
&\text{Heaviside}(t-2)*hb(t-2) \\
\text{plot}(yb(t), t=0..4);
\end{align*}
\]

B2. (a) Line 19 of the Laplace transform table says that if \(F(s) = \mathcal{L}\{f(t)\} \), then

\[
\mathcal{L}\{tf(t)\} = -F'(s).
\]

Use this fact to show that

\[
\mathcal{L}\{t \cos at\} = \frac{s^2 - a^2}{(s^2 + a^2)^2}.
\]
Solution: Given \(f(t) = \cos at \) and \(F(s) = \frac{s}{s^2 + a^2} \), we have

\[
\mathcal{L}\{tf(t)\} = -F'(s) = -\frac{(s^2 + a^2) - 2s^2}{(s^2 + a^2)^2} = \frac{s^2 - a^2}{(s^2 + a^2)^2};
\]
as required.

(b) Use the result from part (B2a) and the Laplace transform table to show that

\[
\mathcal{L}\left\{\frac{1}{a} \sin at - t \cos at\right\} = \frac{2a^2}{(s^2 + a^2)^2}.
\]

Solution: We have

\[
\mathcal{L}\left\{\frac{1}{a} \sin at - t \cos at\right\} = \frac{1}{a} \left(\frac{a}{s^2 + a^2} \right) - \frac{s^2 - a^2}{(s^2 + a^2)^2} = \frac{1}{s^2 + a^2} - \frac{s^2 - a^2}{(s^2 + a^2)^2} = \frac{2a^2}{(s^2 + a^2)^2},
\]
as required.

(c) Use Laplace transforms to solve the initial value problem

\[
y'' + 4y = g(t), \quad y(0) = y'(0) = 0
\]

where

\[
g(t) = \begin{cases}
\sin 2t & \text{if } 0 \leq t < 4\pi \\
0 & \text{if } 4\pi \leq t.
\end{cases}
\]

Use a computer to plot your solution.

Solution: Writing \(g(t) \) in terms of Heaviside functions, we get

\[
g(t) = \sin 2t(1 - u_{4\pi}(t)) = \sin 2t - u_{4\pi}(t) \sin 2t = \sin 2t - u_{4\pi}(t) \sin(2(t - 4\pi)),
\]
where the last equality follows because sine is obligingly 2π-periodic (and therefore 8π-periodic).

Taking the Laplace transforms of both sides of our equation, we get

\[(s^2 + 4)Y = (1 - e^{-4\pi s}) \frac{2}{s^2 + 4},\]

where Y is the Laplace transform of the solution. Solving for Y, we get

\[Y = (1 - e^{-4\pi s}) H(s)\] \hspace{1cm} (2)

where

\[H(s) = \frac{2}{(s^2 + 4)^2} = \frac{1}{4} \left(\frac{2 \times 2^2}{(s^2 + 2^2)^2} \right).\]

From the results above, we know that the inverse transform $h(t)$ of $H(s)$ is given by

\[h(t) = \frac{1}{4} \left(\frac{1}{2} \sin 2t - t \cos 2t \right) = \frac{\sin 2t}{8} - \frac{t \cos 2t}{4}.\]

Then from equation (2) above, our solution y is given by

\[y(t) = h(t) - u_{4\pi}(t)h(t - 4\pi).\]

Here is a picture

\[hc := t \rightarrow (1/8)*\sin(2*t) - (1/4)*t*\cos(2*t);\]
\[yc := t \rightarrow hc(t) - \text{Heaviside}(t-4*\Pi)*hc(t-4*\Pi);\]
\[\text{plot}(yc(t), t=0..8*\Pi);\]
C1. Let g be the square wave given (for $t \geq 0$) by

$$g(t) = \sum_{n=0}^{\infty} (-1)^{n} u_{n}(t)$$

(a) Graph $g(t)$, either by hand or with the computer. In Maple, the step function is called `Heaviside()`, and the translation is

$$u_{c}(t) = Heaviside(t - c)$$

Solution: Here is a graph of $g(t)$. *Maple* has included vertical lines at all the points of discontinuity. It would.

```maple
> sq := (n,t) -> sum((-1)^k*Heaviside(t-k),k=0..n);
> plot(sq(10,t),t=0..10,scaling=CONSTRAINED);
```
(b) Let \(G(s) \) be the Laplace transform of \(g(t) \). Find the simplest expression you can for \(G(s) \). Don’t forget to indicate the set of \(s \) for which \(G(s) \) converges.

You may want to use the fact that \(\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \) for \(|r| < 1 \).

Solution: Since the Laplace transform is linear, we have

\[
\mathcal{L} \{ g(t) \} = \sum_{n=0}^{\infty} (-1)^n \mathcal{L} \{ u_n(t) \}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n e^{-ns} \frac{s}{s}
\]

\[
= \frac{1}{s} \sum_{n=0}^{\infty} (-e^{-s})^n.
\]

For \(s > 0 \), we have \(| -e^{-s}| = e^{-s} < 1 \), so the geometric series converges, and we
\[
\mathcal{L}\{g(t)\} = \frac{1}{s} \cdot \frac{1}{1 + e^{-s}}, \quad s > 0.
\]

C2. Solve the initial value problem \(y'' + 8y = g(t); \quad y(0) = 0, \quad y'(0) = 0\) where \(g(t)\) is the square wave in problem C1. Plot your solution for \(t\) from 0 to at least 50.

(Note: it will be easier to leave the transform of \(g(t)\) in the form of an infinite sum.)

Solution: Taking the transforms of both sides of the differential equation, we get

\[
(s^2 + 8)Y = \frac{1}{s} \sum_{n=0}^{\infty} (-1)^n e^{-ns}
\]

so that

\[
Y = \frac{1}{s(s^2 + 8)} \sum_{n=0}^{\infty} (-1)^n e^{-ns}
\]

Let \(H(s) = \frac{1}{s(s^2 + 8)}\). By partial fractions, we find that

\[
H(s) = \frac{1}{8} \left(\frac{1}{s} - \frac{s}{s^2 + 8} \right).
\]

Let \(h(t)\) be the inverse transform of \(H(s)\). We have

\[
h(t) = \frac{1}{8} - \frac{1}{8} \cos(\sqrt{8}t).
\]

The solution to the IVP is

\[
\sum_{n=0}^{\infty} (-1)^n u_n(t) h(t - n).
\]

Here is a plot of this solution.

```maple
> hd := t -> (1/8)*(1-cos(t*sqrt(8)));
> yd := (n,t) -> sum((-1)^k*Heaviside(t-k)*hd(t-k),k=0..n);
> plot(yd(50,t),t=0..50);
```