For each integer m from 1 to 103, we listed the non-zero squares modulo m, and then checked to see whether the set of non-zero squares formed a cyclic difference set modulo m.In the table below, the first column gives the value of m and the second gives the number of non-zero squares there are modulo m. A 0 in the third column indicates that the set of non-zero squares modulo m is not a cyclic difference set. If the value is the third column is not zero, it is the number of times each non-zero element of Z/mZ is represented as a difference of two non-zero squares modulo m.
In the first column, the primes are shaded.
m # Non-zero
squaresValue of
lambda1 0 0 2 1 0 3 1 0 4 1 0 5 2 0 6 3 0 7 3 1 8 2 0 9 3 0 10 5 0 11 5 2 12 3 0 13 6 0 14 7 0 15 5 0 16 3 0 17 8 0 18 7 0 19 9 4 20 5 0 21 7 0 22 11 0 23 11 5 24 5 0 25 10 0 26 13 0 27 10 0 28 7 0 29 14 0 30 11 0 31 15 7 32 6 0 33 11 0 34 17 0 35 11 0 36 7 0 37 18 0 38 19 0 39 13 0 40 8 0 41 20 0 42 15 0 43 21 10 44 11 0 45 11 0 46 23 0 47 23 11 48 7 0 49 21 0 50 21 0 51 17 0 52 13 0 53 26 0 54 21 0 55 17 0 56 11 0 57 19 0 58 29 0 59 29 14 60 11 0 61 30 0 62 31 0 63 15 0 64 11 0 65 20 0 66 23 0 67 33 16 68 17 0 69 23 0 70 23 0 71 35 17 72 11 0 73 36 0 74 37 0 75 21 0 76 19 0 77 23 0 78 27 0 79 39 19 80 11 0 81 30 0 82 41 0 83 41 20 84 15 0 85 26 0 86 43 0 87 29 0 88 17 0 89 44 0 90 23 0 91 27 0 92 23 0 93 31 0 94 47 0 95 29 0 96 13 0 97 48 0 98 43 0 99 23 0 100 21 0 101 50 0 102 35 0 103 51 25