Data for Chapter 2 MATH 251SPRING 2004

Data on cyclic difference sets
For each integer m from 1 to 103, we listed the non-zero squares modulo m, and then checked to see whether the set of non-zero squares formed a cyclic difference set modulo m.

In the table below, the first column gives the value of m and the second gives the number of non-zero squares there are modulo m. A 0 in the third column indicates that the set of non-zero squares modulo m is not a cyclic difference set. If the value is the third column is not zero, it is the number of times each non-zero element of Z/mZ is represented as a difference of two non-zero squares modulo m.

In the first column, the primes are shaded.

m # Non-zero
squares
Value of
lambda
100
210
310
410
520
630
731
820
930
1050
1152
1230
1360
1470
1550
1630
1780
1870
1994
2050
2170
22110
23115
2450
25100
26130
27100
2870
29140
30110
31157
3260
33110
34170
35110
3670
37180
38190
39130
4080
41200
42150
432110
44110
45110
46230
472311
4870
49210
50210
51170
52130
53260
54210
55170
56110
57190
58290
592914
60110
61300
62310
63150
64110
65200
66230
673316
68170
69230
70230
713517
72110
73360
74370
75210
76190
77230
78270
793919
80110
81300
82410
834120
84150
85260
86430
87290
88170
89440
90230
91270
92230
93310
94470
95290
96130
97480
98430
99230
100210
101500
102350
1035125