\documentclass[12pt]{article} \pagestyle{empty} \parindent=0in \parskip=10pt \newtheorem{claim}{Claim} \newenvironment{proof}{{\bf Proof:}}{\hfill \rule{5pt}{5pt}} \newenvironment{altproof}{{\bf Alternate Proof:}}{\hfill \rule{5pt}{5pt}} \begin{document} {\large Math 251 \hfill Homework Solution \hfill 2 February 2004} \\*[-5pt] \rule{\textwidth}{1pt} \begin{claim} For any real number $r \neq 1$ and every integer $n \geq 0$, \begin{eqnarray} \sum_{k=0}^n r^k & = & {1-r^{n+1} \over 1-r} \label{assertion} \end{eqnarray} \end{claim} \begin{proof} For each non-negative integer $n$, let \begin{eqnarray*} T_n & = & 1 + r + r^2 + \cdots + r^n \end{eqnarray*} Then we have \begin{eqnarray*} (1-r)T_n & = & (1-r)(1 + r + r^2 + \cdots + r^n) \\ & = & \begin{array}[t]{rcrcrcccrcr} 1 & + & r & + & r^2 & + & \cdots & + & r^n & & \\ & - & r & - & r^2 & - & \cdots & - & r^n & - & r^{n+1} \end{array} \\ & = & 1 - r^{n+1} \end{eqnarray*} so that \begin{eqnarray} (1-r)T_n & = & 1 - r^{n+1} \label{multiplicativeform} \end{eqnarray} Now since $r \neq 1$, we can divide both sides of (\ref{multiplicativeform}) by $1-r$ to get \begin{eqnarray*} T_n & = & {1 - r^{n+1} \over 1-r} \end{eqnarray*} and since ${\displaystyle T_n = \sum_{k=0}^n r^k}$, we have proved (\ref{assertion}). \end{proof} \begin{altproof} We proceed by induction on $n$. For the base case, take $n=0$. On the left side of (\ref{assertion}), we have ${\displaystyle \sum_{k=0}^0 r^k}$, which is just $r^0$, or $1$ (we are assuming that $0^0 = 1$ for this problem). On the right side of (\ref{assertion}), we have ${\displaystyle {1-r \over 1-r}}$, which, for $r \neq 1$, is also equal to $1$. Thus, (\ref{assertion}) holds in the base case. For the inductive step, we assume that (\ref{assertion}) holds for some value of $n \geq 0$, and show that \begin{eqnarray} \sum_{k=0}^{n+1} r^k & = & {1 - r^{(n+1)+1} \over 1-r} \label{inductivestep} \end{eqnarray} We have \begin{eqnarray} \sum_{k=0}^{n+1} r^k & = & \left ( \sum_{k=0}^n r^k \right ) + r^{n+1} \label{newleftside} \\ & = & \left ( {1 - r^{n+1} \over 1 - r} \right ) + r^{n+1} \label{inductiveresult} \end{eqnarray} by the inductive hypothesis. Now the right side of (\ref{inductiveresult}) is just \begin{eqnarray} {1 - r^{n+1} \over 1-r} + r^{n+1} & = & {1 - r^{n+1} + (1-r)r^{n+1} \over 1 - r} \\ & = & {1 - r^{n+1} + r^{n+1} - r^{(n+1)+1} \over 1 - r} \\ & = & {1 - r^{(n+1)+1} \over 1 - r} \label{newrightside} \end{eqnarray} Putting lines (\ref{newleftside}) through (\ref{newrightside}) together, we get \begin{eqnarray*} \sum_{k=0}^{n+1} r^k & = & {1 - r^{(n+1)+1} \over 1 - r} \end{eqnarray*} which is just line (\ref{inductivestep}). Thus, by the principle of mathematical induction, claim (\ref{assertion}) holds for all integers $n \geq 0$. \end{altproof} \end{document}