TWO DEFINITIONS:

1. The definition of the DEFINITE INTEGRAL (page 230): For a continuous function \(f(x) \) on the interval \(a \leq x \leq b \), the definite integral of \(f \) from \(a \) to \(b \), which we denote by the notation \(\int_{a}^{b} f(x) \, dx \), is the limit of the left-hand or right-hand Riemann Sums with \(n \) subdivisions of \([a, b]\) as \(n \) gets arbitrarily large.

 In other words,
 \[
 \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left(\text{left-hand sum} \right) = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x
 \]
 OR
 \[
 \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left(\text{right-hand sum} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x
 \]
 where \(x_i = a + i(\Delta x) \) and \(\Delta x = (b - a)/n \).

2. The definition of the INDEFINITE INTEGRAL (page 268): The indefinite integral of a function \(f(x) \) is defined to be the family of functions whose derivative equals \(f(x) \). To denote the family of all antiderivatives of \(f(x) \), we use the notation
 \[
 \int f(x) \, dx.
 \]
 Thus, if \(F(x) \) is any function such that \(F'(x) = f(x) \) then the family of functions is \(\int f(x) \, dx = F(x) + C \) where \(C \) is allowed to be any constant.
THE FUNDAMENTAL THEOREM (PART 1: page 244): If f is a continuous function on the interval $[a, b]$ and $F'(t) = f(t)$, then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$