1. Let $T : \mathbb{P}_2 \rightarrow \mathbb{R}^2$ be a linear transformation from \mathbb{P}_2 the vector space of polynomials of degree 2 or less to the plane. Suppose that: $T(1) = (2, 1)$, $T(x) = (1, 4)$, and $T(x^2) = (5, 0)$.

 (a) If you encrypt the polynomials $a + bx + cx^2$ as vectors (a, b, c), find the matrix formula that represents the linear transformation T.

 (b) Find a basis for the Kernel of T and interpret it as a set of polynomials.

 (c) Find a basis for the image of T in \mathbb{R}^2.

 (d) Is T one-to-one? Is T onto? Make sure to explain your reasoning.

 (e) What is the rank of T? What is the dimension of the null space of T. Explain your answers and give definitions for these two concepts.

2. Let $T : \mathcal{V} \rightarrow \mathcal{V}$ be a linear transformation from the subspace \mathcal{V}, a subspace of the vector space of all continuous functions from the real numbers to the real numbers, where $\mathcal{V} = \text{span}(e^x, \sin(x), \cos(x))$ to itself. Suppose that: $T(f(x)) = f'(x)$.

 (a) If you encrypt the polynomials $ae^x + b\sin(x) + c\cos(x)$ as vectors (a, b, c), find the matrix formula that represents the linear transformation T.

 (b) Find a basis for the Kernel of T and interpret it as the span of a set of functions in \mathcal{V}.

 (c) Find a basis for the image of T in \mathcal{V}.
(d) Is T one-to-one? Is T onto? Make sure to explain your reasoning.

(e) What is the rank of T? What is the dimension of the null space of T. What is the row space of T? Explain your answers and give definitions for these two concepts. What kinds of sets in bfV are mapped to the same point in the image?

EXTRA PRACTICE FOR FINAL (NOT due for HMK)
1. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^4$ be defined by

 \[
 T(x, y, z) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.
 \]

 a. Find a basis for the range of T?
 b. Is T onto? Explain clearly why or why not.
 c. Find a basis for the kernel of T.
 d. Is T one-to-one? Why or why not.

2. Consider the vectors $u_1 = (1, 1, 1)$, $u_2 = (-1, 1, 0)$, and $u_3 = (1, 2, 1)$.

 (a) Use the formula $v \cdot w = ||v|| ||w|| \cos(\theta)$ to find the angles between u_1 and u_2, and u_2 and u_3. Use maple and the command: `evalf(arccos(1/(4*sqrt(7))))`; if you want to compute an arccosine value. Change the numbers.

 (b) Find the projection of u_3 onto W the subspace spanned by u_1 and u_2.

 (c) Use Gram-Schmidt to transform $\{u_1, u_2, u_3\}$ into an orthonormal basis for \mathbb{R}^3.