Departmental courses with laboratories satisfy the science and mathematics distribution requirement. Any off-campus biology course taken to satisfy the science and mathematics distribution requirement requirement must have a laboratory component. Courses that are introductions to professional specialties dependent on biology (e.g., nutrition or horticulture), or are addressed to technical certification (e.g., emergency medical technician), do not satisfy the science and mathematics distribution requirement.
The department offers introductory biology in two different forms. The BIOL-145 courses (e.g. BIOL-145AB, BIOL-145GW, etc.) are a liberal arts introduction to biology in a small-class atmosphere. Different sections emphasize different topics. BIOL-160, which must be taken concurrently with CHEM-160, offers an integrated introduction to biology and chemistry. Either one is an appropriate choice for students who are considering a major in biology, biochemistry, or environmental studies. Completion of any of these courses will allow a student to enroll in BIOL-200. Students are welcome to email the instructors to find out more about any of the introductory courses.
Majors are strongly encouraged to complete the following course work outside of biological sciences: Organic Chemistry (CHEM-202 and CHEM-302), as well as additional coursework in Physics and Computer Science.
It is not difficult to major in Biological Sciences and go off-campus for one or two semesters. For instance, other places are better situated to study tropical rain forests, deserts, or the ocean. Students have also received credit toward the biology major for course work done in French at partner universities in Montpellier. Mount Holyoke College has special relationships with several other programs abroad. It is not safe to assume, however, that biology courses taken through any program off-campus will count toward requirements of the Biology major. Before enrolling in study away from the College, it is essential to talk about your goals and specific plans with the Chair of Biology or a designated faculty member.
BIOL-145 Introductory Biology
BIOL-145AB Introductory Biology: 'Animal Bodies, Animal Functions'
How are animal bodies built to deal with living on earth? In this course we will study the function of cells, organs, and organ systems that have evolved to help animals make their way through the physical and chemical environment. In lecture and in lab, we will consider the common needs of animals -- needs such as feeding, breathing, and reproducing -- and the diverse solutions they have devised. A range of life, from unicellular organisms to animals with backbones (including mammals), will be considered.
BIOL-145BT Introductory Biology: 'biology Today'
In this student-centered course, we will explore some of the core concepts, language, and frameworks used in the discipline of biology. This course will help students develop and hone an important skill-set, including experimental design, scientific writing and problem solving. In lecture, we will learn biology by investigating topics that affect everyone, learning about the impacts of social stress on mammalian cardiovascular systems, the promise and peril of gene editing, and the evolution of human skin color, for example. All course objectives will be met through active learning exercises in lecture, readings, discussions, and hands-on work in the laboratory.
BIOL-145EX Introductory Biology: 'Exploring Biodiversity'
In this course, we will take a leap back in time to the origins of life, discuss the evolution of major organismal lineages, and investigate physiology and cellular processes. Through the lectures, labs, and in-class discussions, students will be able to explain how scientific knowledge is generated. In lab, students will explore biological diversity, physiology, and cellular dynamics, with a focus on gaining skills in scientific inquiry, including hypothesis development, experimental design, collecting and analyzing results, and scientific writing.
BIOL-145GW Introductory Biology: 'A Green World'
This course examines the plant life in the woods and fields around us, the exotic plants in our greenhouses, and the plants we depend on for food. We will study plants living in surprising circumstances, settling into winter, escaping from gardens, reclaiming farmland, cooperating with fungi and insects, and fighting for their lives. We will find that plants challenge some conventional, animal-based assumptions about what matters to living things. In labs, students will seek to answer questions about how plants grow in nature, by studying plant structure and function, ecology, and evolution.
BIOL-145MB Introductory Biology: 'Marine Organismal Biology'
In this course, students will explore the diversity of form and function that exists within oceanic organisms with a particular focus on intertidal and subtidal ecosystems of the Northeast U.S. We will learn how organisms are classified, what structures and systems enable these organisms to function and adapt to their unique environments, and how organisms interact with one another and their habitats.
BIOL-160 Integrated Introduction to Biology and Chemistry
This 8-credit course serves as a gateway to both the biology and chemistry core curricula. The course introduces and develops fundamental concepts in chemistry while also exploring the diverse range of strategies adopted by living systems to survive in different environments. This course prepares students for further study in chemistry (Chemistry 201) and/or biology (Biology 200). Students must register for both Biology 160 and Chemistry 160 as well as a single lab section (listed under Chemistry 160L). Recommended for students interested in completing pre-health requirements or advanced study in biochemistry or neuroscience.
BIOL-200 Introductory Biology II: How Organisms Develop
Developmental biology is a topic full of fantastic questions: how does a single egg transform into an organism with many cells and tissue types? What controls gene expression? What is the interplay between environmental signal and plant hormones? In this course plant and animal development will be studied at the level of genes, cells and tissues, in model organisms such as sea urchins, ferns, chicks and lilies. The laboratory is at the heart of the course, and classwork is designed around the live material students will meet each week.
BIOL-206 Local Flora
This course offers plant identification and natural history, emphasizing native and introduced trees and wildflowers. On- and off-campus field trips.
BIOL-209 Science Communication
In this course, we will evaluate the practices that best support a shared understanding of facts and enable trustworthy storytelling. We will read peer-reviewed literature on the benefits, challenges, and equity considerations of using various presentation formats and platforms. Students will analyze and then practice science-sharing methods targeting professionals and general audiences.
BIOL-223 Ecology
This ecology course will cover the fundamental factors controlling the distribution and abundance of organisms, including interactions with the abiotic environment, fitness and natural selection, population growth and dynamics, species interactions, community dynamics, and diversity. We will address variation across space and time. The course will combine observational, experimental, and mathematical approaches to some of the applications of ecological theory, including conservation, disease dynamics, and biological control.
BIOL-226 Evolution: Making Sense of Life
Evolution is central to our understanding of Biology; it helps us explain both the diversity and commonality in organismal form, function and behavior that have been generated over 3 billion years of life on Earth. We will discuss the mechanisms of evolution within populations and between species, examine some branches of the tree of life and learn how the tree is generated, discuss how phenotypes arise from genotypes and interactions with the environment, and how development is central to understanding evolution. Some themes include the evolution of symbiosis, sex, and human evolution, as well as the crucial role that evolutionary principles play in society including agriculture, medicine, and even the judicial system.
BIOL-230 Molecular Genetics and Cell Biology
Cells are the smallest common denominator of life: the simplest organisms are single cells, while others like ourselves are composed of vast communities of cells. In this course, we will learn how cellular structure and function is orchestrated by biological molecules, most notably the genome and the proteins it encodes. Topics will include genetic inheritance, gene and protein regulation, cellular processes including transport, energy capture, and signaling, the cellular and molecular basis for disease, and modern techniques including genomics, bioinformatics, and microscopy. The laboratory component will illustrate and analyze these topics through selected experimental approaches.
BIOL-234 Biostatistics
The statistics sections of biology articles have become so technical and jargon-filled that many biologists feel intimidated into skipping them or blindly accepting the stated results. But how can we ask relevant questions or push the boundaries of knowledge if we skip these sections? Using lectures, data collection, and hands-on analysis in R, this course will connect statistics to biology to help students develop a gut instinct for experimental design and analysis. We will explore sampling bias and data visualization and review methods and assumptions for the most common approaches with examples from current biological literature and our own data.
BIOL-295 Independent Study
In this class, students will acquire hands-on experience in diverse aspects of the research process in any field of Biology, from familiarizing themselves with a research topic, generating interesting questions, designing experiments, acquiring technical skills, collecting and analyzing data, to writing and/or presenting their results. To inquire about enrollment, students should fill out the application survey available on the departmental website or on my.mtholyoke. The application is generally available between registration and the end of exams, and faculty meet after exams to place students in labs for the following semester. Decisions depend on lab capacity. A single credit requires an average of 3 hrs of work per week. (Note: Some faculty may require a set weekly meeting time for a portion of this class.)
BIOL-301 Regenerative Medicine: Biology and Bioethics
What is regenerative medicine? What is the science that drives new medical therapies using stem cells? We will study the biology of adult, embryonic, and induced pluripotent stem cells, as well as the legal, ethical, and moral implications of using these cells in medical therapies. Each member of the class will participate in a staged debate on these issues for an introductory biology class.
BIOL-305 Cellular and Molecular Aspects of Development
Examines the roles of cellular movement and cellular interaction in the development of multicellular organisms. Topics include cell recognition and adhesion during morphogenesis, the importance of extracellular matrices, and current theories of embryonic pattern formation. Self-designed laboratories include techniques such as microsurgery and time-lapse recording, using a wide variety of embryos and cell types.
BIOL-307 Vertebrate Anatomy
We will study the structure, function and evolution of the diversity of structures that allow vertebrates, including humans, to perform basic functions. We will connect these functions with day-to-day challenges for vertebrates, and we will discuss functional disruption such as disease and trauma. Students are expected to work in groups, as well as view most lectures before class. Class time will be used for active discussion and occasional guest lectures. During lab time, we will dissect many vertebrates and comfort with working with preserved and often smellly specimens is a must. This class requires memorization of many structures in a functional context.
BIOL-314 Nucleic Acids Biochemistry and Molecular Biology
This course is an in-depth examination of DNA and RNA structures and how these structures support their respective functions during replication, transcription, and translation of the genetic material. Emphasis is on the detailed mechanisms associated with each step of gene expression. Discussions incorporate many recent advances brought about by recombinant DNA technology.
BIOL-315 Behavioral Ecology
In this course, students learn to view and understand animal behavior within an evolutionary context. The mechanistic side of behavior is investigated and students explore how behavioral traits originate and evolve over time. Students will integrate their knowledge of how organisms work with an appreciation of why they work the way they do. At the end of the course, students will understand basic concepts in behavioral biology and know many of the experiments that have facilitated our understanding of this field. They will be able to construct hypotheses and design experiments that address behavioral phenomena. The laboratory portion of this course is based on individual projects.
BIOL-319 Immunology with Laboratory
The immune system protects the sterile interior of our bodies from the vast diversity of microbes in the outside world, adapting and improving from each encounter. How does it achieve this remarkable feat? This course will investigate the cells, organs, and biochemical signals that comprise innate and adaptive immune systems, as well as how they interact to identify and remove foreign pathogens. Emphasis will be placed on the human immune response to infectious diseases, with examples from clinical case studies and experimental models. The laboratory portion will provide experience with the foundational techniques of immunology research. Additional topics may include: autoimmunity, allergy, vaccination, transplantation, cancer, immune deficiency, and pathogen evasion strategies.
BIOL-321 Conference Course
Selected topics from areas emphasized in the department according to needs of particular students. Study in small groups or by individuals.
BIOL-321AD Conference Course: 'Substance Use Disorder: Addiction and Drug Memory Formation'
In this course, we will review the contribution of memory processes to substance use disorder. We will review primary research literature and case studies that explore the neuronal plasticity that underlie drug addiction and long-term memory formation. After reviewing the scientific literature, we will examine the overlap between memory and addiction-related behaviors of rodents. This course will enable students to relate changes in neuronal structure and function to drug-associated behavioral changes.
BIOL-321BE Conference Course: 'Inquiries in Behavioral Ecology'
In this student-centered project-based course, students will design their own animal behavior investigation and prepare a web-based presentation, teaching module, or manuscript. At the end of the course, students will improve their understanding of basic concepts in behavioral biology and develop a deep understanding of the scientific literature in their area of inquiry. We will work on skills that promote supportive research environments, and explore inclusive approaches to science communication.
BIOL-321CR Conference Course: 'Coral Reefs in a Changing Climate'
Coral reefs are among the most diverse and important ecosystems in the world's oceans. Yet they face a multitude of stressors leading to their decline in both structure and function -- including ocean warming, acidification, coastal development, and land-use change. This course provides a detailed exploration of coral reef ecology, physiology, and biogeochemistry including reading, interpreting, and analyzing of primary literature. Building upon previous research we will work to understand the state of the world's reefs and evaluate possible solutions to the interacting stressors that imperil coral reefs in the modern world.
BIOL-321DE Conference Course: 'Disease Ecology'
The effects of emerging wildlife diseases are global and profound. They can result in economic and agricultural impacts, declines in wildlife populations, ecological disturbance and even the loss of human lives. Disease dynamics are governed by species interactions and the abiotic environment. We will consider the synergistic effects of globalization, climate change, and agriculture on the spread of pathogens. This course will focus on both wildlife diseases and the ecological context of vector-borne human pathogens, including but not limited to the Sylvatic plague, West Nile Virus, Lyme disease and the newly emergent Rabbit Hemorrhagic Disease Virus.
BIOL-321EC Conference Course: 'Invasion Ecology'
Invasive species have become a common focus for land managers and gardeners around the world because some invasive species have decimated local biodiversity. What can we learn about these species, their interactions with local communities, and the dynamics of invasions that will help us manage diversity in a changing world? We will discuss the science and politics behind invasive species and explore the secrets of their success their impacts. This course will include a whole class project or group research projects based on current issues in the literature or local invasive species.
BIOL-321GE Conference Course: 'Genomics and Bioinformatics'
How does the organization of information in a genome impact an organism's evolution? How does gene expression shift due to environmental factors and how can that shift and a gene's genomic context tell us about the evolution of ecologically important traits? In this course we will explore the variety of evolutionary and ecological questions that can be answered with genomic and transcriptomic techniques and discuss common methodological approaches. In lab we will get hands-on experience working with real genomic datasets and learn how genomic sequencing data is organized, gain familiarity with basic bioinformatic skills, and practice using a variety of analytical methods.
BIOL-321ME Conference Course: 'Molecular Ecology'
Over the past quarter century, molecular genetic methods have become increasingly important in ecological research. In this course, we will examine contemporary molecular genetic tools and learn how they can be used to answer ecological questions. Topics will include: reconstruction of ancestral relationships; measuring the size, diversity, and spatial structure of populations; characterization of migration and dispersal patterns; and identification of sensitive or threatened species and populations. We will explore these themes through foundational texts and current scientific literature, and we will analyze molecular genetic datasets in class to gain familiarity with available techniques.
BIOL-321MR Conference Course: 'Marine Invertebrate Physiology'
Invertebrates are an incredibly diverse group of organisms that live in nearly all ecosystems across the earth. As ectotherms, invertebrates must develop plastic responses to environmental variation in order to survive. In this course, we will explore these plastic responses in marine invertebrates at all levels of organization -- from cellular to ecosystem scales -- through hands-on activities, projects, and synthesis of primary literature.
BIOL-321PB Conference Course: 'Plant Biogeography'
How do plant species arrive and establish on islands? What roles do ecology and evolution play in the where, how, and when of plant geographic patterns? This course establishes an appreciation for patterns of species distributions on local and global scales. Students explore how physical factors (e.g. geology, soil, and climate) interact with biological factors (e.g. physiology, evolution, and competition) to affect past, present, and potential future plant biogeography. Students will engage with primary literature on plant biomes, species ranges, the effects of climate change, and contemporary influences of humans on the movement of plants.
BIOL-321PR Conference Course: 'Pregnancy and the Placenta'
Pregnancy is a stunning feat of physiology. It is a conversation between two bodies -- parental and fetal -- whose collective action blurs the very boundaries of the individual. In this course we will explore such questions as: what is pregnancy, and how does the ephemeral, essential organ known as the placenta call pregnancy into being? How is pregnancy sustained? How does it end? We will consider the anatomy of reproductive systems and the hormonal language of reproduction. We will investigate the nature of "sex" hormones, consider racial disparities in pregnancy outcome, and weigh the evidence that the intrauterine environment influences disease susceptibility long after birth.
BIOL-321RB Conference Course: 'Race and Biology'
In this student-centered, discussion-based seminar, we will explore current hypotheses about the evolution of human variation, trace the history of how biology has been used in the construction of racial ideologies, and delve into the impacts of racial categorization on human health. We will investigate these themes through readings, videos, class discussions, student expert panels, and research papers. Students taking this course will improve their ability to: engage constructively in scholarly discussions; use verbal and written discourse to explore themes in science; use new knowledge to understand current issues; critically evaluate media information using evidence from scientific studies; and communicate new knowledge.
BIOL-321TH Conference Course: 'Ornithology'
In this course, we will explore the evolutionary history and defining characteristics of living dinosaurs, also known as birds. Students will learn how anatomy and physiology influence natural history and spectacular behaviors such as mating displays and long- and short-distance migrations. By the end of this course, students will: develop a greater appreciation for avian biodiversity and the primary threats to avian conservation across the full annual cycle, be able to identify local bird species by sight and sound, and understand the primary methods used in avian field studies. Students will also learn how to: work together in a group of their peers, synthesize scientific literature, and create a science communication product for a target public audience.
BIOL-321VX Conference Course: 'Outsmarting Pathogens'
Smallpox, a disfiguring infection called "one of the most devastating diseases known to humanity" by the World Health Organization, was eradicated from the planet through immunization. Polio paralyzed 350,000 children a year until immunization reduced infection by 99%. Why have we succeeded in immunizing against these pathogens but not HIV or the common cold? Students in this seminar will discuss primary literature in immunology, microbiology, and epidemiology to learn how vaccines outsmart pathogens. Study of biological mechanisms will be complemented with exploration of the socioeconomic factors that influence vaccine development and usage. Students' independent research will connect their interests and current events to course concepts.
BIOL-323 Plant Growth and Development
This course is a study of the higher plant, its structure, organization, and development. We will examine the endogenous and environmental factors influencing plant growth and reproduction. Topics include anatomy, hormones and their mode of action, tropisms, photomorphogenesis, and flowering.
BIOL-325 Plant Diversity and Evolution
This course explores the tremendous diversity of the plant kingdom, emphasizing the local flora. Evolutionary relationships are discussed on the basis of comparisons of reproductive biology, morphology, anatomy, cell structure, and molecular biology.
BIOL-326 Ocean Blues: State of the World's Oceans
Ocean ecosystems are of tremendous ecological importance and provide many billions of dollars worth of services annually, yet our marine systems face serious threats due to overfishing, climate change, ocean acidification, pollution, and the spread of invasive species. Conservation and management strategies aim to protect our remaining martine resources and restore those that have been lost or damage. In this course, we will study the scientific evidence documenting the most pressing threats to marine ecosystems and examine available strategies for mitigating these threats. We will also explore cultural, economic, and political issues relevant to marine conservation and management.
BIOL-327 Microbiology
We share planet Earth with an unimaginable number of "invisible" microbial life forms. In this course we will explore the structure, metabolism, genetics, and ecology of microbes, most prominently bacteria. Other microbes, including archaea, eukaryotic microbes, and viruses will also be considered. Whenever possible, the relationship between microbes and humans will be highlighted. Other goals will be for students to become comfortable with scientific primary literature and to hone their communication skills through discussions and written assignments. Finally, the laboratory portion of this course will highlight classic and modern techniques in microbiology.
BIOL-328 Human Physiology
In this class we will learn about the functions of human organ systems and their relationships with each other in health and disease, at both the cellular and tissue levels. We will study the mechanisms that regulate a variety of organ systems and learn how these mechanisms respond to the changing needs of the individual. Because a purely reductive approach often misses important determinants of body function, we will also consider how human health and disease unfold in a person's particular social and cultural context.
BIOL-331 Conservation Biology
This course focuses on advanced ecological theory applied to conservation. Class will combine lectures and discussions of primary scientific literature. Because Conservation Biology is an applied discipline, we will explore the nuances of management effects in different situations as well as the role of humans in the decline of biodiversity. This year this course will not have a separate lab section or count as a lab course, but the course will still include a large final project that can be collaborative and community-based.
BIOL-333 Neurobiology
Description: We will study the electrical and chemical signals underlying the generation of the nerve impulse and synaptic transmission. We will then explore neuroanatomy, diseases of the brain and the neuronal circuits underlying learning and memory and sensory perception.
BIOL-337 Symbiotic Interactions
From mutualism to parasitism, symbiotic interactions are a universal feature of life. In this seminar we will study the mechanisms underlying symbiotic interactions and consider their significance for the ecology and evolution of organisms. Through foundational texts and current scientific literature, we will explore some of the most spectacular and important examples of contemporary symbioses - from infectious diseases to coral reefs, to infectious diseases, to the vast communities of microbes that live on and in our bodies - and we will learn how symbiosis is responsible for major milestones in the history of life, such as the origin of the eukaryotic cell, the emergence of land plants, and the evolution of sex.
BIOL-338 Evolution and Human Sexual Behavior
We will discuss patterns and variations of human sexual behavior and the likely role that evolution has played in shaping some of these patterns. We will discuss the evolution of sex, gender differences, principles of sexual selection, physiology, cultural differences in sexual behavior, mating systems, etc. We will follow a recently published book on this topic, and add readings from the primary literature. Students are expected to write one major research paper on any aspect of human sexual behavior of their choosing and to be ready to present their findings to the class towards the end of the semester.
BIOL-340 Eukaryotic Molecular Genetics
In this course we will examine the role of molecular genetic analysis in the study of phenomena such as human disease (e.g., cancer), animal development, and gene regulation. We will also discuss new techniques for genomic analysis, including the science as well as the health, legal, ethical and moral issues involved. There will be group discussions of original research articles and review articles.
BIOL-351 Research Methods: Peer Review
Peer review is the process by which scientists evaluate the integrity of each other's work. It is the backbone of science that justifies public confidence in our work and drives decisions about which research gets published and funded. Just as peer review is integral to science, teaching students how to peer review is integral to their education. This seminar will demystify the review process and give students hands-on experience reviewing manuscripts related to their interests. By critiquing other scientists' work, students will improve their own ability to design experiments, analyze and present data, communicate and see themselves as scientists.
BIOL-395 Independent Study
In this class, students will acquire hands-on experience in diverse aspects of the research process in any field of Biology, from familiarizing themselves with a research topic, generating interesting questions, designing experiments, acquiring technical skills, collecting and analyzing data, to writing and/or presenting their results. To inquire about enrollment, students should fill out the application survey available on the departmental website or on my.mtholyoke. The application is generally available between registration and the end of exams, and faculty meet after exams to place students in labs for the following semester. Decisions depend on lab capacity. A single credit requires an average of 3 hrs of work per week. (Note: Some faculty may require a set weekly meeting time for a portion of this class.)
BIOL-399 Biology Journal Club/Data Hub
Reading and understanding research reports from the primary scientific literature is an essential skill for any scientist. Likewise, critiquing experimental proposals and freshly-minted data is one of the core components of the pursuit of science. Using the Biology Department Seminar series as a springboard, this course seeks to familiarize students with the process of understanding, appreciating, and critiquing scientific manuscripts. Additionally, drawing on projects being proposed and executed under the auspices of Biology 395, this course seeks to help students develop comfort discussing 'fresh' scientific data. This course will provide a valuable way to connect with active scientists, both developing and experienced, from within and beyond Mount Holyoke.