Kenneth Colodner

Assistant Professor of Neuroscience and Behavior

Ken Colodner is a cellular and molecular neuroscientist whose research is focused on understanding how communication between the two major cell types in the brain, neuronal and glial cells, is disrupted in neurodegenerative diseases. He is particularly interested in understanding the disease process of Alzheimer's disease and related tauopathies, a class of diseases characterized by the pathological buildup of the protein, tau. Using modern genetic techniques in the fruit fly, Drosophila melanogaster, he examines the functional consequences of tau expression on neuronal-glial interactions in the fly brain. These experiments are aimed towards understanding mechanisms of tau toxicity, and identifying novel, therapeutic targets for these disorders.

As a doctoral student at Harvard Medical School, Ken Colodner worked with pioneers in the field of neurodegenerative disease research to identify a role for glial cell dysfunction in contributing to neurodegenerative disease progression. As a postdoctoral fellow at Boston Children's Hospital, he helped identify key mediators of synapse loss in models of aging and Alzheimer's disease. His research has been published in the Journal of Neuroscience, Journal of Neuropathology and Experimental Neurology, and the Journal of Experimental Neuroscience.

Throughout his previous research training, Ken Colodner has taught full-year seminars on glial cells and has served as a teaching fellow for Behavioral Neuroscience and Biology of Neurodegenerative Diseases at Harvard University. He has twice been awarded the Derek Bok Certificate of Distinction in Teaching. At Mount Holyoke he teaches Introduction to Neuroscience and Behavior, Cellular and Molecular Neuroscience, and Biology of Neurological Disease.

Recent Campus News

Glial cells of a fruit fly brain express green fluorescence protein, as visualized with an integrated laser scanning/spinning disk microscopy system.

MHC receives NSF grant for microscopy

The new advanced microscopy system will bring new research, interdisciplinary collaboration and community outreach opportunities to Mount Holyoke.

Schwartzer and his students in front of their posters at the NEURON conference

The brainiest research

Students of Mount Holyoke’s expanding neuroscience program shine at annual NEURON conference.

Recent Publications

Botero, V. [MHC '18], Stahl, B., Grenci, E.C., Boto, T., Park, S.J., King, L.B., Murphy, K.R., Colodner, K.J., Walker, J.A., Keene, A.C., Ja, W.W., Tomchik, S.M. (2021) Neurofibromin regulates metabolic rate via neuronal mechanisms in Drosophila. Nature Communications, Jul 13;12(1):4285. doi: 10.1038/s41467-021-24505-x.

Nangia, V. [MHC '16], O’Connell, J. ['19], Chopra, K ['20], Qing, Y.['21], Reppert, C. ['18], Chai, C. ['14], Bhasiin, K. ['22], and Colodner, K.J. (2021) Genetic reduction of tyramine β hydroxylase suppresses Tau toxicity in a Drosophila model of tauopathy. Neuroscience Letters, Apr 25: 135937. doi: 10.1016/j.neulet.2021.135937

Scarpelli EM, Trinh VY [MHC '18], Tashnim Z [MHC '19], Krans JL, Keller LC, Colodner KJ. (2019). Developmental expression of human tau in Drosophila melanogaster glial cells induces motor deficits and disrupts maintenance of PNS axonal integrity, without affecting synapse formation. PLoS One, 14(12):e0226380.

Kahlson M.** and Colodner K.J.. (2016) Glial tau pathology in tauopathies: Functional consequences. Journal of Experimental Neuroscience, 9(Suppl 2):43-50. [invited review]
**denotes Mount Holyoke College undergraduate student

Shi Q.*, Colodner K.J.*, Matousek S.B., Merry K., Hong S., Kenison J.E., Frost J.L., Le K.K., Li S., Dodart, J.C., Caldarone B.J., Stevens B., Lemere C.A. (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. Journal of Neuroscience, 35(38):13029-42.
* Co-first author.